A Generalization of Moufang and Steiner Loops

Michael K. Kinyon, Kenneth Kunen*, and J.D. Phillips

October 3, 2001

Abstract

We study a variety of loops, RIF, which arise naturally from considering the inner mapping group, and a somewhat larger variety, WRIF. All Steiner and Moufang loops are RIF, and all flexible C-loops are WRIF. We show that all WRIF loops are diassociative, thus generalizing Moufang's Theorem.

1 Introduction

A loop is an algebraic system \((L; \cdot, \setminus, /, 1)\) satisfying the equations

\[x \cdot (x\setminus y) = x \setminus (x \cdot y) = (y/x) \cdot x = (y \cdot x)/x = y \cdot 1 = 1 \cdot y = y \ . \]

See the books \[1, 4, 13\] for further information. Since loops in general form too broad a class for detailed study, the literature has focused on various sub-varieties of loops.

Many of these varieties are defined by some weakening of the associative law, \(x \cdot yz = xy \cdot z\). Some obvious weakenings are the flexible laws and the left and right alternative laws:

\[\text{FLEX} : x \cdot yx = xy \cdot x \quad \text{RALT} : x \cdot yy = xy \cdot y \quad \text{LALT} : y \cdot yx = yy \cdot x \ . \]

There is also the inverse property, IP. This asserts that there is a permutation \(J\) of order two such that (writing \(x^{-1}\) for \(xJ\)) left and right division are given by \(x\setminus y = x^{-1}y\) and \(y/x = yx^{-1}\). Most of the loops considered in this paper

*Author supported by NSF Grant DMS-9704520
1 INTRODUCTION

have the IP. The IP implies the antiautomorphic inverse property (AAIP),

\((xy)^{-1} = y^{-1}x^{-1}\), so that \(J\) provides an isomorphism from the loop \((L; \cdot)\) onto

its opposite loop \((L; \circ)\) (where \(x \circ y = y \cdot x\)). Thus, in IP loops, the right and

left versions of properties (e.g., RALT and LALT) are equivalent.

In a loop \(L\), the left and right translations by \(x \in L\) are defined by

\(yL(x) = xy\) and \(yR(x) = yx\), respectively. The multiplication group of \(L\)

is the permutation group on \(L\), \(\text{Mlt}(L) = \langle R(x), L(x) : x \in L \rangle\), generated

by all left and right translations. The inner mapping group is the subgroup

\(\text{Mlt}_1(L)\) fixing 1. If \(L\) is a group, then \(\text{Mlt}_1(L)\) is the group of inner automor-

phisms of \(L\). In an IP loop, the AAIP implies that we can conjugate by \(J\) to get:

\[L(x)^J = R(x^{-1}) \quad R(x)^J = L(x^{-1}) \]

where \(\theta^J = J^{-1}\theta J = J\theta J\) for a permutation \(\theta\). If \(\theta\) is an inner mapping, then

so is \(\theta^J\). This leads us to one of the classes of IP loops we study in this paper:

Definition 1.1 A RIF loop is an IP loop \(L\) with the property that \(\theta^J = \theta\)

for all \(\theta \in \text{Mlt}_1(L)\). Equivalently, inner mappings preserve inverses, i.e.,

\((x^{-1})\theta = (x\theta)^{-1}\) for all \(\theta \in \text{Mlt}_1(L)\) and all \(x \in L\).

RIF loops include the Steiner loops, which may be defined to be IP loops of

exponent two (that is, \(x^{-1} = x\), so \(J\) is the identity permutation). Steiner loops

arise naturally in combinatorics, since they correspond uniquely to Steiner

triple systems; specifically, the Steiner loop \(L\) corresponds to the triple system

\(\{\{x,y,xy\} : x \neq y \& x,y \neq 1\}\) on \(L\ \setminus \{1\}\).

RIF loops also include what is probably the most well-studied class of

nonassociative loops, namely those satisfying the Moufang laws [11, 12]:

Definition 1.2 A Moufang loop is a loop satisfying the following equations:

\[M1 : \ (x(yz))x = (xy)(zx) \quad M2 : \ (xz)(yx) = x((zy)x) \]

\[N1 : \ ((xy)z)y = x(y(zy)) \quad N2 : \ ((yz)y)x = y(z(yx)) \]

In fact, by work of Bol and Bruck, each of these equations implies the other

three (see Bruck [1], Lemma 3.1, p. 115). That every Moufang loop is RIF

follows from Lemma 3.2, p. 117, of [1]. It is easily seen that the only loops

which are both Steiner and Moufang are the boolean groups. Thus a direct

product of a nonassociative Steiner loop with a nonassociative Moufang loop

is a RIF loop which is neither Steiner nor Moufang.
1 INTRODUCTION

A loop is said to be diassociative if the subloop \(\langle x, y \rangle \) generated by any two elements is a group. Diassociative loops are always IP loops, and are flexible and alternative. Steiner loops are obviously diassociative; in fact each \(\langle x, y \rangle \) is a boolean group (of order 1, 2, or 4). Less obviously, by Moufang’s Theorem, every Moufang loop is diassociative.

Bruck and Paige [2] defined an A-loop to be a loop in which every inner mapping is an automorphism. An A-loop need not be an IP-loop, but they show, by modifying the proof of Moufang’s Theorem, that every IP A-loop is diassociative. In fact, it turned out later [8] that the IP A-loops form a proper sub-variety of the Moufang loops. Weakening of the notion of IP A-loop so that inner mappings preserve inverses, but not necessarily products, we obtain RIF loops.

The notion “RIF” can be expressed by a finite set of equations (Lemma 2.2). These lead naturally (Lemma 2.4) to a slightly weaker notion, WRIF.

Definition 1.3 A WRIF loop is a flexible loop satisfying the following equations:

\[
W1 : R(x)R(yxy) = R(axy)R(y) \quad W2 : L(x)L(yxy) = L(xy)L(y)
\]

In fact, a flexible loop satisfying either W1 or W2 has the IP and hence satisfies both equations (Lemma 2.7). Every WRIF loop of odd order is Moufang (Corollary 2.14) (whereas non-group Steiner loops are RIF and not Moufang). Besides RIF loops, WRIF includes another variety of IP loops, namely the flexible C-loops (Corollary 2.6). C-loops were introduced by Fenyves [6]; see Section 2. There exist flexible C-loops which are not RIF loops (Example 4.1), and there exist WRIF loops which are neither RIF loops nor C-loops (see Section 4).

Pronunciation 1.4 “WRIF” and “RIF” both rhyme with “stiff”. “WRIF” is to “RIF” as “wrap” is to “rap”.

Acronym 1.5 \(W = \text{Weak}, \ R = \text{Respects}, \ I = \text{Inverses}, \ F = \text{Flexible} \).

Section 3 is devoted to the proof of our main result, a generalization of Moufang’s Theorem to WRIF loops:

Theorem 1.6 Every WRIF loop is diassociative.
Our inductive proof of this theorem is patterned on Moufang’s proof, but is quite a bit more complicated than hers, or than the corresponding proof in Bruck and Paige [2] for IP A-loops. We do not know a simpler proof, but Example 4.3 shows that the basic lemma on associators developed by Moufang can fail in a WRIF loop (in fact, in a Steiner loop).

Note that if we write out the definition of diassociativity in the obvious way, we get an infinite list of equations. The following problem, asked first by Evans and Neumann [5], is still open:

Question 1.7 Does the variety of diassociative loops have a finite basis?

If the answer is “yes”, which seems unlikely, then inductive proofs of diassociativity could always be replaced by the verification of a finite number of instances of diassociativity, which could result in a simplification.

Our investigations were aided by the automated reasoning tools OTTER, developed by McCune [10], and SEM developed by J. Zhang and H. Zhang [14]. SEM finds finite models of systems of axioms, and was used to produce the three examples in Section 4. OTTER derives statements from axioms, and was used to derive enough instances of diassociativity from WRIF for the pattern to become clear.

2 Basics

Following Bruck [1] (see IV.1), the inner mapping group of any loop is generated by the inner mappings of the form $L(x, y), R(x, y),$ and $T(x)$:

Definition 2.1

$$T(x) = R(x)L(x)^{-1}$$

$$L(x, y) = L(x)L(y)L(yx)^{-1}$$

$$R(x, y) = R(x)R(y)R(xy)^{-1}$$

Using this, we can express the notion of RIF by equations.

Lemma 2.2 The following are equivalent for an IP loop L:

1. L is a RIF loop.
2. L is flexible and $R(x, y) = L(x^{-1}, y^{-1})$ for all $x, y \in L$.
3. $R(xy)L(xy) = L(y)L(x)R(x)R(y)$ for all $x, y \in L$.
4. $L(xy)R(xy) = R(x)R(y)L(y)L(x)$ for all $x, y \in L$.
Proof. The flexible law can be expressed as \(R(x) L(x) = L(x) R(x) \) for all \(x \). In an IP loop, this is equivalent to \(L(x^{-1}) R(x) = R(x) L(x^{-1}) \), that is, \(T(x)^{T} = T(x) \). Also, an easy calculation gives \(R(x, y)^{T} = L(x^{-1}, y^{-1}) \) in an IP loop. Thus (1) and (2) are equivalent. Using the IP and Definition 2.1, \(R(x, y) = L(x^{-1}, y^{-1}) \) is equivalent to \(L(xy) R(xy) = L(y) L(x) R(x) R(y) \). Since the flexible law is just \(R(z) L(z) = L(z) R(z) \), (2) implies (3). Conversely, if (3) holds, then taking \(y = 1 \) gives the flexible law, so that (3) implies (2). Finally, (3) and (4) are equivalent by the IP. \(\square \)

Combining 3 and 4 from Lemma 2.2 we obtain the very useful identity
\[
L(y) L(x) R(x) R(y) = R(x) R(y) L(y) L(x),
\]
which we will frequently appeal to in our arguments.

Corollary 2.3 In a RIF loop, if we let \(P(x) = L(x) R(x) \), then \(P(xy) = P(x) P(y) P(x) \).

Proof. Applying Lemma 2.2 twice, \(P(x \cdot yx) = R(x) R(yx) L(yx) L(x) = R(x) L(x) L(y) R(y) R(x) L(x) = P(x) P(y) P(x) \). \(\square \)

The fact that Moufang loops satisfy \(P(xy) = P(x) P(y) P(x) \) is Theorem 5.1, p. 120, of Bruck [1]. The same theorem points out that \(L(xy) = L(x) L(y) L(x) \) and \(R(xy) = R(x) R(y) R(x) \) also hold in Moufang loops. But in flexible loops, these are simply restatements of the Moufang equations \(N1, N2 \) in Definition 1.2, so they do not hold in all RIF loops, since they fail in any non-group Steiner loop.

Next we show that RIF loops satisfy equations W1, W2 of Definition 1.3.

Lemma 2.4 Every RIF loop is a WRIF loop.

Proof. Equations W1, W2 are equivalent in IP loops. To prove W1, start with \(R(v) R(y) L(y) L(v) = L(y) L(v) R(v) R(y) \), which is
\[
v(yz)v) = (v(yz)v)y ,
\]
and set \(v = ux \) and \(z = u^{-1} \), so that \(zv = x \). We get
\[
ux \cdot yxy = (ux \cdot yu^{-1} \cdot ux)y .
\]
But \(R(u^{-1}) R(ux) L(ux) = R(x) L(x) L(u) \) (see Lemma 2.2), so
\[
ux \cdot yxy = (u \cdot xyx)y ,
\]
which is $W1$. □

Next we show that every flexible C-loop is a WRIF loop. C-loops, introduced by Fenyves [6], are loops satisfying the equation $((xy)y)z = x(y(yz))$. These have the inverse property (see [6], Theorem 4) and are alternative (see [6], Theorem 3). They are not necessarily flexible (see Example 4.2). Every Steiner loop is trivially a C-loop; in fact, Table 1 of [6], a C-loop which is not Moufang, is just the 10-element Steiner loop.

Theorem 2.5 Every C-loop satisfies

$$R(xy)^2 = R(x)R(y(xy)) = R((xy)x)R(y).$$

Proof. Since the loop is alternative, the C-loop property can be written as $R(a)^2R(b) = R(a^2b)$. This gives us:

$$R(xy)^2R(y^{-1}) = R((xy)^2y^{-1}) = R((xy)((xy)y^{-1})) = R((xy)x).$$

so $R(xy)^2 = R((xy)x)R(y)$. Now, if $x = v^{-1}$ and $y = v(uv)$, we have $xy = uv$ and hence $R(uv)^2 = R(u)R(v(uv))$. □

Corollary 2.6 Every flexible C-loop is a WRIF loop.

We now examine basic properties of WRIF loops.

Lemma 2.7 A loop satisfying

$$W1': \quad R(x)R((yx)y) = R(x(yx))R(y)$$

is an alternative IP loop.

Proof. Let x^{-1} denote the unique solution to $x^{-1}x = 1$. Applying $W1'$ to x^{-1} gives $(yx)y = (x^{-1}(x(yx)))y$, and cancelling gives $yx = x^{-1}(x(yx))$. Replacing y with $(x\backslash y)/x$ yields $x\backslash y = x^{-1}y$. In particular $1 = x(x^{-1}1) = xx^{-1}$, and so $(x^{-1})^{-1} = x$. Next apply $W1'$ to $(x(yx))^{-1}$ to get $((x(yx))^{-1}x)((yx)y) = y$, and thus $(yx)y = (((x(yx))^{-1}x)^{-1}y$. Cancelling, we have $yx = ((x(yx))^{-1}x)^{-1}$. Replacing y with y/x gives $y = ((xy)^{-1}x)^{-1}$ and so $y^{-1} = (xy)^{-1}x$, which implies $(xy)y^{-1} = x$. Replacing x with x/y gives $xy^{-1} = x/y$. Thus the loop satisfies the IP. Setting $y = 1$ in $W1'$ yields the right alternative law $R(x)R(x) = R(xx)$, and the right and left alternative laws are equivalent in IP loops. □
Corollary 2.8 Every WRIF loop is an alternative IP loop.

Lemma 2.9 Every WRIF loop satisfies $R(x)R(y^2x^{-1})R(x) = R(xy^2)$.

Proof. Start with $R(aba)R(b) = R(a)R(bab)$.

Set $b = xy$ and $a = x^{-1}$ (so $ab = y$) to get $R(yx^{-1})R(xy) = R(x^{-1})R(xy^2)$.

Set $b = x$ and $a = yx^{-1}$ (so $ab = y$) to get $R(y^2x^{-1})R(x) = R(xy^{-1})R(xy)$.

Putting these together, we have $R(y^2x^{-1})R(x) = R(x^{-1})R(xy^2)$. \(\square\)

Corollary 2.10 Every WRIF loop in which each element is a square is a Moufang loop.

Proof. Now we have $R(x)R(yx^{-1})R(x) = R(xy)$. If we let $z = yx^{-1}$ and $y = zx$, we get $R(x)R(z)R(x) = R(xzx)$, which (in flexible loops) is the Moufang equation N1 of Definition 1.2. \(\square\)

We shall next prove that WRIF loops are power alternative, and hence power associative. Until we prove this, we let x^n denote the right-associated product:

Definition 2.11 Define $x^n = (1)(L(x))^n$ for any $n \in \mathbb{Z}$.

Thus, $x^3 = x \cdot xx$, and (in an IP loop) $x^{-3} = (1)L(x^{-1})^3 = x^{-1} \cdot x^{-1}x^{-1}$, whereas $(x^3)^{-1} = x^{-1}x^{-1} \cdot x^{-1}$.

Definition 2.12 A loop G is power associative iff for all $x \in G$, the subloop (x) generated by x is a group, and power alternative iff $L(x^i) = (L(x))^i$ and $R(x^i) = (R(x))^i$ for all $x \in G$ and all $i, j \in \mathbb{Z}$

It is easily seen that diassociativity implies power alternativity and power alternativity implies power associativity.

Theorem 2.13 Every WRIF loop is power alternative.

Proof. Whenever $n > 0$, say that an IP loop G is n–PA iff $L(x^m) = (L(x))^m$ whenever $1 \leq m \leq n$ and $x \in G$. So, the 1–PA is trivial and the 2–PA (that is, $xx \cdot y = x \cdot xy$) is equivalent to the alternative law. Hence, a 2–PA loop satisfies $x^3 = xx \cdot x = x \cdot xx$ and $x^{-3} = (x^3)^{-1}$.

Note that an IP loop which is n–PA for all $n > 0$ is power alternative. Thus, we prove by induction on $n \geq 3$ that the WRIF loop G is n–PA. So,
3 DIASSOCIATIVITY

assume that G is $(n - 1)$-PA, and we prove that $L(x^n) = (L(x))^n$. Note that the $(n - 1)$-PA implies that $x^i \cdot x^j = ((1)(L(x)^j))L(x)^i = x^{i+j}$ whenever $1 \leq i \leq n - 1$. We consider two cases:

If $n = 2k + 1$, then set $y = x^k$ in Lemma 2.9 to get
\[R(x)R(x^{2k-1})R(x) = R(x^{2k}). \]
Since $x^{2k-1} = x^{2k}x^{-1} = x^{2k-1}$, this reduces to $R(x)^n = R(x^n)$, and hence, by the IP, $L(x)^n = L(x^n)$.

If $n = 2k$, then $x^n = (1)(L(x)^2)^k = 1L(x^2)^k = (x^2)^k$ (by the 2-PA), so that by the k-PA, $L(x^n) = L(x^2)^k = L(x)^n$. \qed

This second case generalizes to show that in any IP loop, the least n such that the n-PA fails must be prime.

Corollary 2.14 Every finite WRIF loop of odd order is Moufang.

Proof. Apply Corollary 2.10. Since the loop is power alternative, the usual Lagrange Theorem applies to show that each element has odd order, and hence is a square. \qed

3 Diassociativity

Moufang loops are diassociative by Moufang’s Theorem. The proof for WRIF loops is more complicated. First, a lemma which generalizes Lemma 2.9:

Lemma 3.1 In any WRIF loop:

1. $R(yx^m)R(x^ny^{-1}) = R(yx^{m+k})R(x^{n-k}y^{-1})$
2. $R(x^my)R(y^{-1}x^n) = R(x^{m+k}y)R(y^{-1}x^{n-k})$
3. $L(x^my)L(y^{-1}x^n) = L(x^{m+k}y)L(y^{-1}x^{n-k})$
4. $L(yx^m)L(x^ny^{-1}) = L(yx^{m+k})L(x^{n-k}y^{-1})$

whenever $m,n,k \in \mathbb{Z}$ and either k is even or $m + n$ is even.

Proof. We focus on (1,2), since (3,4) are equivalent by the IP. Define:

\[
(m,n) \sim_1 (s,t) \iff \forall x,y[R(yx^m)R(x^{-n}y^{-1}) = R(yx^s)R(x^{-t}y^{-1})]
\]

\[
(m,n) \sim_2 (s,t) \iff \forall x,y[R(x^{-m}y)R(y^{-1}x^n) = R(x^{-s}y)R(y^{-1}x^t)]
\]

\[
(m,n) \sim (s,t) \iff (m,n) \sim_1 (s,t) \text{ and } (m,n) \sim_2 (s,t)
\]
3 DIASSOCIATIVITY

The sign change in the exponent simplifies the notation somewhat, since now we have \((m, n) \sim_1 (s, t) \leftrightarrow (m, s) \sim_2 (n, t)\), so that

\[
(m, n) \sim (s, t) \leftrightarrow (m, s) \sim (n, t) .
\] \hspace{1cm} (A)

It is clear that each of \(~_1, \sim_2, \sim\) is an equivalence relation. By (A) and the fact that \(~\) is symmetric:

\[
(m, n) \sim (s, t) \leftrightarrow (n, m) \sim (t, s) .
\] \hspace{1cm} (B)

Also, replacing \(x\) by \(x^{-1}\) we have

\[
(m, n) \sim (s, t) \leftrightarrow (-m, -n) \sim (-s, -t) .
\] \hspace{1cm} (C)

Replacing \(y\) by \(yx^j\) we have

\[
(m, n) \sim (s, t) \leftrightarrow (m + j, n + j) \sim (s + j, t + j) .
\] \hspace{1cm} (D)

So far, everything we have said holds in any IP power alternative loop. Our goal is now to prove \((m, n) \sim (m + k, n + k)\) whenever \(m, n, k \in \mathbb{Z}\) and either \(k\) is even or \(m + n\) is even.

In the equations

\[R(y, xy)R(x) = R(y)R(xy) ; \quad R(xy, x)R(y) = R(x)R(y, xy) , \]

set \(x = a^\alpha b^{-1}\) and \(y = ba^\delta\). Then, by power alterativity,

\[
xy = a^{\alpha + \delta}a^{-\delta}b^{-1} \cdot ba^\delta = a^{\alpha + \delta}(ba^\delta)^{-1} \cdot ba^\delta = a^{\alpha + \delta} ,
\]

so that \(xyx = a^{2\alpha + 2\delta}b^{-1}\) and \(yxy = ba^{\alpha + 2\delta}\). We get:

\[
R(ba^{\alpha + 2\delta}b^{-1})R(a^{\alpha + \delta}b^{-1}) = R(ba^\delta)R(a^{2\alpha + \delta}b_{-1})
\]

\[
R(a^{2\alpha + \delta}b^{-1})R(ba^\delta) = R(a^\alpha b^{-1})R(ba^{\alpha + 2\delta}) .
\]

The first of these equations implies \((\alpha + 2\delta, -\alpha) \sim_1 (\delta, -2\alpha - \delta)\), while the second implies \((-2\alpha - \delta, \delta) \sim_2 (-\alpha, \alpha + 2\delta)\), so (B) yields \((\alpha + 2\delta, -\alpha) \sim (\delta, -2\alpha - \delta)\). Set \(\alpha = -m - 2c\) and \(\delta = m + c\) to get \((m, m + 2c) \sim (m + c, m + 3c)\).

Iterating this:

\[
(m, m + 2c) \sim (m + jc, m + (j + 2)c) \hspace{1cm} (E)
\]

for every \(m, c, j \in \mathbb{Z}\). But by (A), we also have \((m, m + c) \sim (m + 2c, m + 3c)\), and iterating this we get:

\[
(m, m + c) \sim (m + 2jc, m + (2j + 1)c) \hspace{1cm} (F)
\]
3 DIASSOCIATIVITY

for every $m, c, j \in \mathbb{Z}$.

Now, in view of (D), the lemma is equivalent to:

$$n \text{ even or } k \text{ even } \rightarrow (0, n) \sim (k, n + k).$$

We prove by induction on n that $(*)$ holds for all k. By (C), it is sufficient to consider $n \geq 0$, and the $n = 0$ case holds by the IP. Now, fix $n > 0$.

If n is even, we need to prove $(0, n) \sim (k, n + k)$ for all k. Setting $c = \frac{n}{2}, m = k$ in (E) we get $(k, n + k) \sim (k + \frac{n}{2}, n + k + \frac{n}{2})$, so it is sufficient to prove $(0, n) \sim (k, n + k)$ whenever $0 \leq k < \frac{n}{2}$. But since this is the same as $(0, k) \sim (n, n + k)$, it follows by applying $(*)$ inductively to k, since n is even.

If n is odd, we need to prove $(0, n) \sim (2k, n + 2k)$ for all k. Setting $c = n, m = 2k$ in (F) we get $(2k, n + 2k) \sim (2k + 2jn, n + 2k + 2jn)$, so it is sufficient to prove $(0, n) \sim (2k, n + 2k)$ whenever $0 \leq 2k < 2n$. Now n is odd, so $2k \neq n$. If $0 \leq 2k < n$, then $(0, n) \sim (2k, n + 2k)$ (equivalently, $(0, 2k) \sim (n, n+2k)$) follows by applying $(*)$ inductively to $2k$. If $n < 2k < 2n$, then induction gives us instead $(0, 2n - 2k) \sim (-n, n - 2k)$, and hence (by (A,C)) $(0, n) \sim (2k - 2n, 2k - n)$. But also $(0, n) \sim (-2n, -n)$ (by (F) with $c = n, m = 0, j = -1$), so $(2k, n + 2k) \sim (2k - 2n, 2k - n)$ (by (D)), and hence $(2k, n + 2k) \sim (0, n)$. \hfill \Box

We remark that one cannot remove the restriction on m, n, k. For example, if $R(yx)R(y^{-1}) = R(y)R(xy^{-1})$ (that is $(1, 0) \sim (0, -1)$) holds, then the loop must be Moufang (see the proof of Corollary 2.10). Conversely, Moufang loops satisfy the lemma for all m, n, k. To see this, note that we now have $(m+1, m) \sim (m, m-1)$ for every m, and hence $(m+1, m) \sim (n+1, n)$ for every m, n. So, $(m, n) \sim (m+1, n+1)$ for every m, n, and hence $(m, n) \sim (m+k, n+k)$ for every m, n, k.

The following lemma will be useful in the proof of diassociativity:

Lemma 3.2 In a WRIF loop, suppose that p, a, q satisfy:

$$p \cdot aq = pa \cdot q$$

$$pa \cdot a^{-1}q = pa^{-1} \cdot aq = pq.$$

Then $pa^n \cdot a^m q = pa^{m+k} \cdot a^{n-k} q$ for all m, n, k.

Proof. We first verify

$$p \cdot a^{-1}q = pa^{-1} \cdot q :$$
Applying Definition 1.3 twice, \(R(x)R(y)R(xy) = R(xy)R(y)R(x) \). Let \(x = q \) and \(y = q^{-1}a^{-1} \), so \(xy = a^{-1}q \). Let \(z = pa \). Then

\[
z R(x)R(y) = (pa \cdot q)(q^{-1}a^{-1}) = (p \cdot a)(q^{-1}a^{-1}) = p
\]

so \(z R(x)R(y)R(xy) = p \cdot a^{-1}q \). Also, \(z R(xy) = pa \cdot a^{-1}q = pq \), so

\[
z R(xy)R(y) = pq \cdot q^{-1}a^{-1} = (pa^{-1} \cdot aq) \cdot q^{-1}a^{-1} = pa^{-1} ,
\]
so \(z R(xy)R(y)R(x) = pa^{-1} \cdot q \).

Apply \(R(q^{-1}a^{-1})R(a^{s+1}q) = R(q^{-1}a^{0})R(a^{s}q) \) to \(pa^{0} \cdot a^{s}q = pa^{-1} \cdot a^{0}q \) to get \(pa^{0} \cdot a^{s+1}q = pa^{-1} \cdot a^{s}q \) whenever \(s \) is even. Then apply \(L(a^{0}p^{-1})L(pa^{t}) = L(a^{-1}p^{-1})L(pa^{t+1}) \) to get \(pa^{t} \cdot a^{s+1}q = pa^{t+1} \cdot a^{s}q \) whenever \(s, t \) are even. Now, the same argument starting from \(pa^{0} \cdot a^{-1}q = pa^{-1} \cdot a^{0}q \) results in \(pa^{t} \cdot a^{s+1}q = pa^{t+1} \cdot a^{s+2}q \) whenever \(s, t \) are even. Applying these with \((s, t), (s + 2, t - 2), (s + 4, t - 4), \ldots \), we get \(pa^{t+i} \cdot a^{s+1-i}q = pa^{t+j} \cdot a^{s+1-j}q \) for all \(i, j \) whenever \(s, t \) are even. But this implies that \(pa^{m} \cdot a^{n}q = pa^{m+k} \cdot a^{n-k}q \) whenever \(m + n \) is odd.

Now apply \(R(q^{-1}a^{-1})R(a^{s+1}q) = R(q^{-1}a^{0})R(a^{s}q) \) to \(pa^{-1} \cdot a^{1}q = pa^{0} \cdot a^{0}q \) to get \(pa^{-1} \cdot a^{s+1}q = pa^{0} \cdot a^{s}q \) whenever \(s \) is even. Then apply \(L(a^{1}p^{-1})L(pa^{t-1}) = L(a^{0}p^{-1})L(pa^{t}) \) to get \(pa^{t-1} \cdot a^{s+1}q = pa^{t} \cdot a^{s}q \) whenever \(s, t \) are even. The same argument starting from \(pa^{1} \cdot a^{-1}q = pa^{0} \cdot a^{0}q \) results in \(pa^{t+1} \cdot a^{s-1}q = pa^{t} \cdot a^{s}q \) whenever \(s, t \) are even. Iterating as before, we get \(pa^{t+i} \cdot a^{s-i}q = pa^{t+j} \cdot a^{s-j}q \) for all \(i, j \) whenever \(s, t \) are even, which implies \(pa^{m} \cdot a^{n}q = pa^{m+k} \cdot a^{n-k}q \) whenever \(m + n \) is even. \(\square \)

A special case of this lemma is where \(p, q \) are both powers of some element \(b \). Now, in a flexible power alternative loop,

\[
x^{i}(yx^{j}) = (y)R(x)^{j}L(x)^{i} = (y)R(x)^{j}R(x)^{i} = (x^{i}y)x^{j} ,
\]
so the notation \(x^{i}yx^{j} \) is unambiguous.

Lemma 3.3 In a WRIF loop, \(x^{i}y^{m} \cdot y^{n}x^{j} = x^{i}y^{m+n}x^{j} \) for all \(i, j, m, n \in \mathbb{Z} \).

Proof. We apply Lemma 3.2. \(x^{i} \cdot yx^{j} = x^{i}y \cdot x^{j} \) holds by power alternativity. But also

\[
x^{i}y^{-1} \cdot yx^{j} = (x^{i}y^{-1})(yx^{-i} \cdot x^{i+j}) = x^{i+j}
\]
by the IP, and likewise \(x^{i}y \cdot y^{-1}x^{j} \). \(\square \)
Remark 3.4 A commutative flexible power alternative loop which satisfies \((x^iy^n)(y^nx^j) = x^iy^{m+n}x^j\) for all \(i, j, m, n \in \mathbb{Z}\) is diassociative.

Proof. Fix \(a, b\), and let \(L = \{(a^ib^m) : i, m \in \mathbb{Z}\}\). By commutativity, \((a^ib^m)(a^ib^n) = a^{i+j}b^{m+n}\), which implies both that \(L\) is a subloop and that \(L\) is associative. \(\square\)

In particular, every commutative WRIF loop is diassociative. To prove diassociativity in the non-commutative case, we set up some machinery. We use standard notation for finite sequences. As usual, if \(A\) is a set then \(A^{<\omega}\) is the set of finite sequences (or words) from \(A\). \(|W|\) is the length of \(W\), so \(|\{\}\| = 0\) and \(|(a, b, c)\| = 3\). If \(W, V \in A^{<\omega}\), then \(W \triangleright V\) is their concatenation. If \(B, C\) are two subsets of a loop, then \(B \cdot C = \{b \cdot c : b \in B \& c \in C\}\).

Definition 3.5 Define \(\Pi(()) = \{1\}\) and \(\Pi((x)) = \{x\}\), and, when \(|W| \geq 2:\)

\[\Pi(W) = \bigcup\{\Pi(V_1) \cdot \Pi(V_2) : V_1 \triangleright V_2 = W \& V_1 \neq () \& V_2 \neq ()\}.\]

Thus, \(\Pi(W)\) denotes the set of possible products of \(W\) under all possible associations. Among these is the right associated product \(\pi_R(W) \in \Pi(W)\):

Definition 3.6 Define \(\pi_R(()) = 1\) and \(\pi_R((x)) = x\), and, when \(|W| \geq 1:\)

\[\pi_R((x)^{-W}) = x \cdot \pi_R(W).\]

\(W\) associates iff \(\Pi(W) = \{\pi_R(W)\}\).

Lemma 3.7 A loop is diassociative iff for all \(a, b\) in the loop, every \(W \in \{a, b, a^{-1}, b^{-1}\}^{<\omega}\) associates.

Now, one might try to prove that all such \(W\) associate by induction on \(W\), in which case the following definition and lemma might be helpful:

Definition 3.8 If \(W = (a_1, \ldots, a_n)\) and \(1 \leq k \leq n - 1\), then \(\pi^k(W) = \pi_R(a_1, \ldots, a_k) \cdot \pi_R(a_{k+1}, \ldots, a_n)\).

Lemma 3.9 If \(W = (a_1, \ldots, a_n)\), then \(W\) associates iff:

1. \(\pi^k(W) = \pi^j(W)\) whenever \(1 \leq j, k \leq n - 1\), and
2. The words \((a_1, \ldots, a_k)\) and \((a_{k+1}, \ldots, a_n)\) associate whenever \(1 \leq k \leq n - 1\).
3 DIASSOCIATIVITY

In our proof that WRIF loops are diassociative, we induct not on \(|W|\), but on the number of blocks in \(W\), defined as follows:

Definition 3.10 \(B(()) = 0\) and \(B((x)) = 1\). If \(W = (x, y)^V\), then \(B(W) = B((y)^V)\) if \(x \in \{y, y^{-1}\}\), and \(B(W) = B((y)^V) + 1\) otherwise.

Thus, \(B(a, a, a^{-1}, b, b^{-1}, b, a) = 3\) if \(a \neq b\) and \(a \neq b^{-1}\).

Definition 3.11 An IP loop \(L\) is \(D\)-associative iff for all \(a, b \in L\), every \(W \in \{a, b, a^{-1}, b^{-1}\}^<\omega\) such that \(B(W) \leq D\) associates.

Lemma 3.12 For any IP loop \(L\):

\(<\Rightarrow\>\ L\ is\ power\ associative\ iff\ \(L\ is\ 1\)-associative.

\(<\Rightarrow\>\ L\ is\ power\ alternative\ iff\ \(L\ is\ 2\)-associative.

\(<\Rightarrow\>\ L\ is\ diassociative\ iff\ \(L\ is\ \(D\)-associative\ for\ all\ \(D\).

So, we already know that every WRIF loop is 2-associative.

Lemma 3.13 Suppose that an IP loop \(L\) is \((D-1)\)-associative, and \(D \geq 3\). Then \(L\ is\ \(D\)-associative\ iff\ whenever\ 2 \leq i \leq D - 1, x, y \in L, and n, k, m_1, m_2, \ldots, m_D \in \mathbb{Z}, the\ appropriate\ one\ of\ the\ following\ equations\ holds:

\[
\begin{align*}
(x^{m_1}y^{m_2}x^{m_3} \cdots x^{m_i}) \cdot (y^{n_1}x^{m_{i+1}} \cdots y^{m_D}) &= \\
(x^{m_1}y^{n_2}x^{m_3} \cdots y^{m_i-k}) \cdot (y^{n_k}x^{m_{i+1}} \cdots y^{m_D}) \\
(x^{m_1}y^{m_2}x^{m_3} \cdots x^{m_i}) \cdot (x^{n_1}y^{m_{i+1}} \cdots y^{m_D}) &= \\
(x^{m_1}y^{m_2}x^{m_3} \cdots x^{m_i-k}) \cdot (x^{n_k}y^{m_{i+1}} \cdots x^{m_D}) \\
(x^{m_1}y^{m_2}x^{m_3} \cdots x^{m_i}) \cdot (y^{n_1}y^{m_{i+1}} \cdots x^{m_D}) &= \\
(x^{m_1}y^{m_2}x^{m_3} \cdots x^{m_i-k}) \cdot (x^{n_k}y^{m_{i+1}} \cdots x^{m_D})
\end{align*}
\]

\(i\ is\ even\ in\ (1,3)\ and\ odd\ in\ (2,4),\ and\ \(D\ is\ even\ in\ (1,2)\ and\ odd\ in\ (3,4)\).

Note that by \((D-1)\)-associativity, the parenthesized expressions in Lemma 3.13 are unambiguous. Also, note that by power alternativeity, it is not necessary to consider the cases \(i = 1\) and \(i = D\). By Lemma 3.3,

Corollary 3.14 Every WRIF loop is 3-associative.
Now, in proving D - associativity by induction on D, equations (1,2,3,4) give us four different cases to consider. Case (4) is handled easily by conjugation. First, note that 3 - associativity implies that conjugation commutes with powers:

Lemma 3.15 In any 3 - associative IP loop, $(x^{-1}yx)^n = x^{-1}y^nx$ for all $n \in \mathbb{Z}$.

Proof. This is clear for $n = 0$ and $n = \pm 1$, so it is sufficient to prove it for $n \geq 1$, which we do by induction on n. Assume it holds for n. By 3 - associativity, $x^{n+1} = xy \cdot y^{-1}x^n$. Let $x = u^{-1}vu = u^{-1}v^2 \cdot v^{-1}u$ and $y = u^{-1}v$. Then $xy = u^{-1}v^2$ and $x^n = u^{-1}v^n u = u^{-1}v \cdot v^{n-1}u$, so $y^{-1}x^n = v^{n-1}u$. Hence, $(u^{-1}vu)^{n+1} = x^{n+1} = xy \cdot y^{-1}x^n = u^{-1}v^2 \cdot v^{n-1}u = u^{-1}v^{n+1}u$. □

Lemma 3.16 Suppose an IP loop L is $(D - 1)$ - associative, where $D \geq 4$, and assume that $2 \leq i \leq D - 1$ and D, i are both odd. Then equation (4) of Lemma 3.13 holds.

Proof. Under the substitution $u = x^{m_1}yx^{-m_1}$, $y = x^{-m_1}ux^{m_1}$, equation (4) reduces to:

$$(u^{m_2}x^{m_3} \cdots x^{m_i+m_1}) \cdot (x^{n-m_1}ux^{m_i+1} \cdots x^{m_D+m_1}) =$$

$$= (u^{m_2}x^{m_3} \cdots x^{m_i+m_1-k}) \cdot (x^{n-m_1+k}ux^{m_i+1} \cdots x^{m_D+m_1})$$

which is an instance of $(D - 1)$ - associativity. □

Next, observe that in WRIF loops, Lemma 3.2 implies that we need only consider (1,2,3,4) in two special cases:

Lemma 3.17 Suppose that a WRIF loop L is $(D - 1)$ - associative, and $D \geq 3$. Fix i with $2 \leq i \leq D - 1$, and fix $m_1, m_2, \ldots, m_{i-1}, m_i+1 \ldots, m_D \in \mathbb{Z}$. Fix $x, y \in L$. Assume that the appropriate equation from (1,2,3,4) in Lemma 3.13 holds in the three special cases $m_i = k = -n = 1$, $m_i = k = -n = -1$, and $m_i = k = 1$; $n = 0$. Then the same equation holds for all values of m_i, k, n.

Proof. For example, say D and i are even, so we are considering equation (1). Let $p = x^{m_1}y^{m_2}x^{m_3} \cdots x^{m_i-1}$ and let $q = x^{m_{i+1}} \cdots y^{m_D}$. Then the three special cases give us $pq \cdot y^{-1}q = pq$, $pq^{-1} \cdot yq = pq$, and $py \cdot q = p \cdot yq$. But then Lemma 3.2 yields (1) for all m_i, k, n. □

Actually, we shall combine the first two cases and handle $m_i = k = -n$ in Lemma 3.19. First, a preliminary lemma, which is a variant of Lemma 3.2.
Lemma 3.18 In a WRIF loop, suppose that p, a, q, s are elements such that:

\[\alpha. \quad p \cdot a^m s = p a^m \cdot s \quad ; \quad s^{-1} \cdot a^m q = s^{-1} a^m \cdot q \quad ; \quad p \cdot a^m q = p a^m \cdot q \]

\[\beta. \quad s^{-1} a^m s \cdot s^{-1} q = s^{-1} a^m q \]

\[\gamma. \quad p s \cdot s^{-1} a^m q = p a^m s \cdot s^{-1} q = p a^m q \]

\[\delta. \quad p a^m s \cdot s^{-1} a^{-n} q = pq \]

for all $m \in \mathbb{Z}$. Then

\[\Delta. \quad p a^m s \cdot s^{-1} a^{-n} q = p a^{m-n} q \]

for all $m, n \in \mathbb{Z}$.

Proof. Let $v = s^{-1} as$ and $u = s^{-1} q$. By (β) and Lemma 3.15, $v^j u = s^{-1} a^j s$ and hence $u^{-1} v^j = q^{-1} a^j s$ for every j. By Lemma 3.1, $R(v^{-n} u) = R(v^{-m} u) R(u^{m-k} R(v^{-n-k} u)$ whenever k is even or $m+n$ is even. Applying this to $p a^m s$ and using (δ), we have

\[p a^m s \cdot s^{-1} a^{-n} q = [pq \cdot q^{-1} a^{m+k}] \cdot s^{-1} a^{-n-k} q \]

But (δ) also implies that $pq = p a^{m+k} s \cdot s^{-1} a^{-m-k} q$, so by the IP we have

\[p a^m s \cdot s^{-1} a^{-n} q = p a^{m+k} s \cdot s^{-1} a^{-n-k} q \]

If k equals either $-m$ or $-n$, then this yields $p a^m s \cdot s^{-1} a^{-n} q = p a^{m-n} q$ by (γ). So, let $k = -m$ if m is even and let $k = -n$ if n is even. If m, n are both odd, then $m+n$ is even and there is no restriction on k, so k can be either $-m$ or $-n$. \(\square \)

Lemma 3.19 Suppose a WRIF loop L is $(D-1)$-associative, where $D \geq 4$, and assume that $1 < i < D$. Then the appropriate equation (1,2,3,4) from Lemma 3.13 holds whenever $m_i = k = -n$.

Proof. First, consider (1). When $m_i = k = -n$, this reduces to:

\[(x^{m_1} y^{m_2} x^{m_3} \cdots x^{m_i-1} y^{m_i}) \cdot (y^{-m_i} x^{m_{i+1}} \cdots y^{m_D}) = x^{m_1} y^{m_2} x^{m_3} \cdots x^{m_i-1+m_{i+1}} \cdots y^{m_D} \]

If we let $u = y^{-m_i} x y^{m_i}$ and $x = y^{m_i} u y^{-m_i}$, then this becomes

\[(y^{m_i} u^{m_1} y^{m_2} u^{m_3} \cdots u^{m_{i-1}}) \cdot (u^{m_{i+1}} \cdots y^{m_{D-m_i}}) = y^{m_i} u^{m_1} y^{m_2} u^{m_3} \cdots u^{m_{i-1+m_{i+1}}} \cdots y^{m_{D-m_i}} \].
which is an instance of $(D - 1) - \text{associativity}$. A similar argument works in cases (2) and (4) but not in case (3), where D is odd and i is even.

To illustrate case (3), consider $D = 7$ and $i = 2, 4, \text{or} 6$. If $i = 6$, we must verify

$$(x^{m_1} y^{m_2} x^{m_3} y^{m_4} x^{m_5} y^{m_6}) \cdot (y^{-m_6} x^{m_7}) = x^{m_1} y^{m_2} x^{m_3} y^{m_4} x^{m_5+m_7}.$$

This is no problem, since it is equivalent to

$$x^{m_1} y^{m_2} x^{m_3} y^{m_4} x^{m_5} y^{m_6} = (x^{m_1} y^{m_2} x^{m_3} y^{m_4} x^{m_5+m_7}) \cdot (x^{-m_7} y^{m_6}) ,$$

which is an instance of $6 - \text{associativity}$. Likewise, the case $i = 2$ is no problem.

But, when $i = 4$, we must verify

$$(x^{m_1} y^{m_2} x^{m_3} y^{m_4}) \cdot (y^{-m_4} x^{m_5} y^{m_6} x^{m_7}) = x^{m_1} y^{m_2} x^{m_3+m_5} y^{m_6} x^{m_7}.$$

This is equivalent to

$$x^{m_1} y^{m_2} x^{m_3} y^{m_4} = (x^{m_1} y^{m_2} x^{m_3+m_5} y^{m_6} x^{m_7}) \cdot (x^{-m_7} y^{m_6} x^{-m_5} y^{m_4}) ,$$

which requires $8 - \text{associativity}$. However, this equation requires only $6 - \text{associativity}$ in the special case that $m_3 = -m_5$, and this case is sufficient by Lemma 3.18, applied with $s = y^{m_4}$, $a = x$, $p = x^{m_1} y^{m_2}$, and $q = y^{m_6} x^{m_7}$. The special case is condition (δ) of Lemma 3.18, and conditions (α, β, γ) are verified using $5 - \text{associativity}$.

The general situation is handled similarly. We must verify

$$(x^{m_1} y^{m_2} x^{m_3} \cdots x^{m_{i-1}} y^{m_i}) \cdot (y^{-m_i} x^{m_{i+1}} \cdots x^{m_D}) = x^{m_1} y^{m_2} x^{m_3} \cdots x^{m_{i-1}+m_{i+1}} \cdots x^{m_D} ,$$

where D is odd and i is even. By mirror symmetry, we may assume that $i \geq (D + 1)/2$. Fix D, i, x, y. Let $H(r)$ be the assertion that this equation holds in the special case that $m_{i+\ell} = -m_{i-\ell}$ whenever $1 \leq \ell \leq r$. So, we want to show $H(0)$. Now, $H(r)$ holds for r large enough by $(D - 1) - \text{associativity}$, and $H(r+1) \longrightarrow H(r)$ holds by Lemma 3.18, so we are done.

To be more specific, $H(r)$ asserts that

$$(x^{m_1} y^{m_2} \cdots z^{m_{i-r-2}} w^{m_{i-r-1}} z^{m_{i-r}} \cdots x^{m_{i-1}} y^{m_i}), \quad (y^{-m_i} x^{-m_{i-r}} \cdots z^{-m_{i-r}} w^{m_{i+r+1}} z^{m_{i+r+2}} \cdots x^{m_D}) = x^{m_1} y^{m_2} \cdots z^{m_{i-r-2}} w^{m_{i-r-1}+m_{i+r+1}} z^{m_{i+r+2}} \cdots x^{m_D} ,$$
where \((z, w)\) is \((x, y)\) if \(r\) is odd and \((y, x)\) if \(r\) is even. This is of form \(db = c\), which is equivalent to \(d = cb^{-1}\). Now, \(c\) has \(D - 2r - 2\) blocks and \(b^{-1}\) has \(D - i + 1\) blocks, and \(c\) ends with \(x\) while \(b^{-1}\) begins with \(x\), so that the expression \(cb^{-1}\) has \(2D - 2r - i - 2\) blocks, so \(H(r)\) follows from \((D - 1)\) - associativity whenever \(2D - 2r - i - 2 \leq D - 1\), or \(r \geq (D - i - 1)/2\).

Now, assume that \(r \leq (D - i - 1)/2 - 1\) and assume that \(H(r + 1)\) holds. \(H(r + 1)\) is the special case of \(H(r)\) with \(m_{i+r+1} = -m_{i-r-1}\). We conclude \(H(r)\) by applying Lemma 3.18, with \(a = w, s = z^{m_{i-r}} \ldots x^{m_{i-1}} y^{m_i}, p = x^{m_1} y^{m_2} \ldots z^{m_{i-r-2}},\) and \(q = z^{m_{i+r+2}} \ldots x^{m_D}\). Condition \((\delta)\) is \(H(r + 1)\), and the conclusion, \((\Delta)\), is \(H(r)\). We must verify that conditions \((\alpha, \beta, \gamma)\) require only \((D - 1)\) - associativity. \((\alpha, \gamma)\) are easy. For \((\beta)\), the expression \(s^{-1}w^{m} ss^{-1} q\) has no more than

\[(r + 1) + 1 + (r + 1) + (D - i - r - 1) - 1 = D - i + 2r + 2\]

blocks. Since \(2r + 2 \leq D - i - 1\) and \(2i \geq D + 1\), we have

\[D - i + 2r + 2 \leq 2D - 2i - 1 \leq D - 2\]

\(\square\)

By this lemma and Lemma 3.17, the requirement for \(D\) - associativity simplifies to Lemma 3.21:

Definition 3.20 \(W(x, y; m_1, m_2, m_3, \ldots, m_D)\) denotes the word of length \(D\), \((x^{m_1}, y^{m_2}, x^{m_3}, \ldots, z^{m_D})\), where \(z\) is \(x\) if \(D\) is odd and \(y\) if \(D\) is even.

Lemma 3.21 Suppose a WRIF loop \(L\) is \((D - 1)\) - associative, where \(D \geq 4\). Then \(L\) is \(D\) - associative iff \(W(x, y; m_1, m_2, m_3, \ldots, m_D)\) associates for every \(x, y \in L\) and every \(m_1, m_2, m_3, \ldots, m_D \in \mathbb{Z}\).

To aid in proving this associativity:

Lemma 3.22 Suppose a WRIF loop \(L\) is \((D - 1)\) - associative, where \(D \geq 4\), and \(W = W(x, y; m_1, m_2, m_3, \ldots, m_D)\). Then \(\pi^k(W) = \pi^{k+2}(W)\) (see Definition 3.8) whenever \(1 \leq k \leq D - 3\).

Proof. Say \(k\) is even; the argument for odd \(k\) is the same. Then we must prove

\[
(x^{m_1} y^{m_2} x^{m_3} \ldots y^{m_k} x^{m_{k+1}} y^{m_{k+2}}) \cdot (x^{m_{k+3}} \ldots z^{m_D}) =
(x^{m_1} y^{m_2} x^{m_3} \ldots y^{m_k}) \cdot (x^{m_{k+1}} y^{m_{k+2}} x^{m_{k+3}} \ldots z^{m_D})
\]
3 DIASSOCIATIVITY

We apply Lemma 3.2, with \(p = x^{m_1}y^{m_2}x^{m_3} \cdots y^{m_k}, q = x^{m_{k+3}} \cdots z^{m_D} \), and \(a = y^{-m_{k+2}}x^{-m_{k+1}} \). Now \(p \cdot aq = pa \cdot q \) follows by \((D-2) \) – associativity, and \(pa \cdot a^{-1}q = pa^{-1} \cdot aq = pq \) follows by \((D-1) \) – associativity plus Lemma 3.19. So, \(p \cdot a^{-1}q = pa^{-1} \cdot q \) follows by Lemma 3.2. □

Lemma 3.23 Suppose a WRIF loop \(L \) is \((D - 1) \) – associative, where \(D \geq 5 \) and \(D \) is odd. Then \(L \) is \(D \) – associative.

Proof. If \(W = W(x, y; m_1, \ldots, m_D) \), then Lemma 3.16 implies that \(\pi^2(W) = \pi^3(W) \). Thus, applying Lemma 3.22, the \(\pi^k(W) \) (for \(1 \leq k \leq D - 1 \)) are all the same. It follows by Lemma 3.9 that \(W \) associates, so \(L \) is \(D \) – associative by Lemma 3.21. □

Lemma 3.24 Suppose that a WRIF loop \(L \) is \((D - 1) \) – associative, where \(D \geq 4 \) and \(D \) is even. Then \(L \) is \(D \) – associative.

Proof. Again, we must show that each \(W(x, y; m_1, \ldots, m_D) \) associates. Let \(H(r) \) be the assertion that \(W(x, y; m_1, \ldots, m_D) \) associates for all \(x, y \in L \) and \(m_1, \ldots, m_D \in \mathbb{Z} \) with \(m_i = 1 \) whenever \(r < i \leq D \). So, our lemma is equivalent to \(H(D) \). Let \(H^+(r) \) be the assertion that \(W(x, y; m_1, \ldots, m_D) \) associates for all \(x, y \in L \) and \(m_1, \ldots, m_D \in \mathbb{Z} \) with \(m_i = 1 \) whenever \(r < i < D \). So, our lemma is also equivalent to \(H^+(D - 1) \). We shall in fact prove:

1. \(H(1) \).
2. \(H(k - 1) \Rightarrow H(k) \) whenever \(2 \leq k \leq D - 1 \).
3. \(H(D - 1) \Rightarrow H^+(1) \).
4. \(H^+(k - 1) \Rightarrow H^+(k) \) whenever \(2 \leq k \leq D - 1 \).

Applying these items in order yields \(H^+(D - 1) \) and hence the lemma.

First, note that, as in the proof of Lemma 3.23, \(W = W(x, y; m_1, \ldots, m_D) \) associates if \(\pi^k(W) = \pi^{k+1}(W) \) for some \(k \) with \(1 \leq k \leq D - 2 \).

To prove \(H(1) \): Let \(W = W(x, y; m_1, 1, 1, \ldots, 1) \). We prove that \(W \) associates by showing that \(\pi^1(W) = \pi^2(W) \); that is, \(x^m \cdot yx \cdots y = x^m \cdot yx \cdots y \). Letting \(u = xy \) so \(y = x^{-1}u \), this reduces to \(x^m(x^{-1}u \cdot u^{D-1}) = x^{m-1}u \cdot u^{D-1} \), which is true by \(2 \) – associativity.

To prove \(H(k - 1) \Rightarrow H(k) \) when \(2 \leq k \leq D \) and \(k \) is odd: \(W \) is now \((x^{m_1}, y^{m_2}, x^{m_3}, \ldots, y^{m_{k-1}}, x^{m_k}, y^1, x^1 \cdots y^1) \), and we shall prove that \(\pi^{k-1}(W) = \pi^k(W) \). Let \(p = x^{m_1}y^{m_2}x^{m_3} \cdots y^{m_{k-1}} \) and \(q = y^1x^1 \cdots y^1 =
$y(xy)^{(D-k-1)/2}$. We need to show that $p \cdot x^{m_k}q = px^{m_k} \cdot q$. When $m_k = 1$, this is true by $H(k-1)$. But also $px \cdot x^{-1}q = px^{-1} \cdot xq = pq$ by Lemma 3.19. $H(k)$ now follows by Lemma 3.2.

The proofs for $H(k-1) \rightarrow H(k)$ for k odd and for $H^+(k-1) \rightarrow H^+(k)$ are the same.

Finally, we assume $H(D-1)$ and prove $H^+(1)$. Let $p = x^{m_1}(xy)^{(D-4)/2}$. We prove that $W = W(x,y;m_1,1,1,\ldots,1,m_D)$ associates by showing that $\pi^{D-2}(W) = \pi^{D-1}(W)$, that is, $py \cdot xy^{m_D} = py \cdot y^{m_D}$. By Definition 1.3 applied twice, we have $R(aba)R(b)R(a) = R(a)R(b)R(aba)$. In particular, if $a = y^{-1}$ and $b = xy^{m_D+1}$ then $aba = x^{m_D}$, so we get:

$$R(xy^{m_D})R(xy^{m_D+1})R(y^{-1}) = R(y^{-1})R(xy^{m_D+1})R(xy^{m_D}) .$$

We apply this equation to $py^{-m_D}x^{-1}$:

Now, $py^{-m_D}x^{-1}$, xy^{m_D} is a product of a word with D blocks, and by Lemma 3.19, this is equal to p. Thus, applying Lemma 3.22 and power alternativity:

$$(py^{-m_D}x^{-1})R(xy^{m_D})R(xy^{m_D+1})R(y^{-1}) = (p \cdot xy^{m_D+1})y^{-1} = (py \cdot y^{m_D+1})y^{-1} = py \cdot y^{m_D} .$$

Likewise, $py^{-m_D}x^{-1} \cdot y^{-1}$ is a product of a word with D blocks, of form $W(x,y;m_1,1,\ldots,1,-m_D,-1,-1)$. This word associates by $H(D-1)$, since it is the same as $W(x,y^{-1};m_1,-1,\ldots,1,m_D,-1,1)$. Thus,

$$py^{-m_D}x^{-1} \cdot y^{-1} = p \cdot y^{-m_D}x^{-1}y^{-1} = py \cdot y^{-m_D-1}x^{-1}y^{-1} ;$$

the second “$=$” is obtained by applying Lemma 3.2, with $a = y$ and $q = x^{-1}y^{-1}$. We thus have

$$ (py^{-m_D}x^{-1})R(y^{-1})R(xy^{m_D+1})R(xy^{m_D}) = [(py \cdot y^{-m_D-1}x^{-1}y^{-1})(xy^{m_D+1})] (xy^{m_D}) = py \cdot (xy^{m_D}) ,$$

and hence $H^+(1)$. \qed

Proof of Theorem 1.6 Use Lemmas 3.23 and 3.24. \qed

4 Examples

Figure 1 depicts the sub-varieties of diassociative loops discussed in this paper. All claimed inclusions have already been proved. All regions shown are non-empty, as can easily be inferred from results in the literature plus Example 4.1:
The loops which are both Moufang and Steiner are the boolean groups and clearly are a proper sub-variety of the extra loops, which are the loops which are both Moufang and (flexible) C (see Fenyes [6]), and these in turn are properly contained in the Moufang loops. If \(A \) is, say, the 10-element Steiner loop, then it is not a group and hence not Moufang. The product of \(A \) and any non-boolean group will be a RIF flexible C-loop which is not Moufang and not Steiner. The product of \(A \) and any Moufang loop which is not an extra loop will be a RIF loop which is not a C-loop. Example 4.1 is a flexible C-loop which is not a RIF loop. Crossing this with a non-extra Moufang loop yields a WRIF loop which is neither C nor RIF. Finally, for every odd prime \(p \), there is a diassociative loop of order \(p^3 \) which is not a group; see, e.g., the proof of Theorem 5.2 in [7]. Such loops cannot be Moufang by Chein [3], and hence not WRIF by Corollary 2.14.

Example 4.1 There is a flexible C-loop which is not a RIF loop.

Proof. Consider the loop in Table 1. The nucleus is \(N = \{0,1,2\} \), and all squares are in \(N \), so that \(L/N \) is the 8-element boolean group. This is not RIF because \((3 \cdot 12) \cdot (15 \cdot (3 \cdot 12)) \neq (3 \cdot ((12 \cdot 15) \cdot 3)) \cdot 12 \), so that (3) of Lemma 2.2 fails. □

Example 4.2 There is a C-loop which is not flexible.
Table 1: A Flexible C non-RIF Loop

Proof. Consider the loop in Table 2. The nucleus is \(N = \{0, 1, 2\} \), and all squares are in \(N \), so that \(L/N \) is the 4-element boolean group. This is not flexible because \(3 \cdot (6 \cdot 3) \neq (3 \cdot 6) \cdot 3 \). \(\square \)

The three examples in this section were found using the program SEM [14]. We do not see a really simple way of checking that Examples 4.1 and 4.2 are both C-loops, with the first one also flexible. However, the reader can easily write the obvious computer program (entering each loop as an array) to check these facts; it is not necessary to verify that the code for SEM itself is correct. Likewise, a program easily checks that the nucleus is \(\{0, 1, 2\} \) for both loops. On the other hand, Example 4.3 below is a Steiner loop, and we shall verify its claimed properties directly from known facts about triple systems.
4 EXAMPLES

<table>
<thead>
<tr>
<th></th>
<th>0 1 2 3 4 5 6 7 8 9 10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>1</td>
<td>1 2 0 4 5 3 7 8 6 10 11 9</td>
</tr>
<tr>
<td>2</td>
<td>2 0 1 5 3 4 8 6 7 11 9 10</td>
</tr>
<tr>
<td>3</td>
<td>3 4 5 0 1 2 10 11 9 8 6 7</td>
</tr>
<tr>
<td>4</td>
<td>4 5 3 1 2 0 11 9 10 6 7 8</td>
</tr>
<tr>
<td>5</td>
<td>5 3 4 2 0 1 9 10 11 7 8 6</td>
</tr>
<tr>
<td>6</td>
<td>6 7 8 11 9 10 0 1 2 4 5 3</td>
</tr>
<tr>
<td>7</td>
<td>7 8 6 9 10 11 1 2 0 5 3 4</td>
</tr>
<tr>
<td>8</td>
<td>8 6 7 10 11 9 2 0 1 3 4 5</td>
</tr>
<tr>
<td>9</td>
<td>9 10 11 7 8 6 5 3 4 0 1 2</td>
</tr>
<tr>
<td>10</td>
<td>10 11 9 8 6 7 3 4 5 1 2 0</td>
</tr>
<tr>
<td>11</td>
<td>11 9 10 6 7 8 4 5 3 2 0 1</td>
</tr>
</tbody>
</table>

Table 2: A non-Flexible C-Loop

The proof of diassociativity of WRIF loops in Section 3 is by induction on the number of blocks, as is Moufang’s proof for Moufang loops in [11, 12], but her proof is quite a bit shorter than ours. She first shows that whenever $(vu)w = v(uw)$, the same equation holds if the elements u, v, w are permuted or replaced by their inverses ([12], pp. 420-421). Using this fact, the step from 3-associativity to full diassociativity is quite easy (the details are in [11][§1]). Actually, as Bruck pointed out, by using this fact one can give a somewhat simpler “maximal associative set” argument which avoids mentioning blocks at all (see [1], §VII.4). However, as the following example shows, this fact does not hold in all WRIF loops, or even in all Steiner loops:

Example 4.3 There is a Steiner loop of order 14 with elements u, v, w such that $(vu)w = v(uw)$ but $(uv)w \neq u(vw)$.

Proof. Let $L = \mathbb{Z}_{13} \cup \{e\}$. Here, e is the identity element of the loop, so $xe = ex = x$ and $xx = e$ by definition. Products xy for distinct elements x, y of $\mathbb{Z}_{13} = \{0, 1, \ldots, 12\}$ are computed in the usual way from a Steiner triple system S on \mathbb{Z}_{13}; that is, S is a set of 3-element subsets of \mathbb{Z}_{13}, and $xy = yx = z$, where z is the (unique) element of \mathbb{Z}_{13} such that $\{x, y, z\} \in S$.

For S, we take one of the standard examples of a triple system (see, e.g., Example 19.12 of [9]): S contains blocks of the form $A_n = \{n, n+2, n+8\}$ and $B_n = \{n, n+3, n+4\}$, where $n \in \mathbb{Z}_{13}$.

So, for example $1 \cdot 0 = 10$ (since $B_{10} = \{10, 0, 1\}$), $10 \cdot 5 = 12$ (using A_{10}), $0 \cdot 5 = 7$ (using A_5), and $1 \cdot 7 = 12$ (using A_{12}). Thus, $(1 \cdot 0) \cdot 5 = 1 \cdot (0 \cdot 5) = 12$.

However, $(0 \cdot 1) \cdot 5 = 12 \neq 3 = 0 \cdot (1 \cdot 5)$, since $1 \cdot 5 = 4$ (using B_1) and $0 \cdot 4 = 3$ (using B_0). □

References

