A. Elementary Problems

- %. Assume the Continuum Hypothesis. Show that there are ω_6 countable subsets of ω_6 .
- 2. Supply a proof or a counter-example for each of the following :
 - a) If w < c, s < c, and w c a, then w < s.
 - b) If \$ < \$, \$ < \$, and \$ C\$, then \$ < \$.
 - c) If NC and Ne a then N < D.
- 3. Let U be any first-order structure. Show that the following are equivalent.
 - a) For all structures & for the same language, was b -- was
 - b) a is finite.
- 4. Calculate

$$3 \cdot (\omega^2 + \omega^3) + (\omega^3 + \omega^2) \cdot 3$$

B. Model Theory

- I. Let T be a complete theory in a countable language. Suppose that for every countable $u \models T$, Th ((u, a) $\in A$) (the complete diagram of u) has at most ω non-isomorphic models of cardinality ω_3 . Prove that T is ω -stable.
- 2. Let T be a complete theory in a countable language. Show that there is an $M \not\models T$ of cardinality $\leq 2^{60}$ with the following property: For every countable $\# \not\models T$ and every $\# \subseteq \mathbb{B}_+$ there is an $R \subseteq A$ such that (#,S) can be elementarily embedded into (#,R).

Qualifying Exam Page 2

- 3. Let T be any extension of group theory which has an infinite model. Show that there is a model $\mathbb{Z} \models T$ such that $|\mathbb{Z}| = 2^{\omega}$ and not every automorphism of \mathbb{Z} is inner.
- 4. Let £ be a language consisting of uncountably many 1-place predicate symbols. Let T be a complete theory in £ and suppose T has a countable saturated model. Show that there is a countable £' C £ such that for each P c £ there is a Q c £' such that

$$T \vdash \forall x (P(x) \iff Q(x))$$
.

C. Recursion Theory

- 1. Let 8 be a collection of r.e. sets. A code set for 8 is a set A C ω such that 8 = {W₀: e \in A}. Show that if 8 has a T^0 code set and 8 contains all finite sets, then 8 has a recursive code set.
- 2. Let $\varphi(x,R)$ be a \prod_1^1 formula, where x ranges over ω and R range over $P(\omega)$. Assume R only occurs positively in φ . Show that the least $R\subseteq \omega$ such that

·19 17 1 .

3. Prove Post's Theorem: A $\subseteq \omega$ is Δ_{k+1}^0 iff A is recursive in a Σ_k^0 set.

'Qualifying Lxam Page 3

4. Let T be XF plus the Power Set Aidom,

Show that for every countable admissible countable

D. Set Theory

1. Show that it is consistent with ZFC + CH + $2^{\omega_1} = \omega_3$ that whenever α_1 is a family of ω_2 uncountable subsets of ω_1 .

$$\exists X \subset \omega^I \land X \in \alpha (|X \cup X| = |X - X| = \omega^I)$$

- 2. Let κ be an uncountable measurable cardinal, and let $A_{G}\subset G$ for $G \subset K$. Show that for some $G \subset G \subset K$, $A_{G} = A_{G} \cap G$.
- 3. Assume MA + 7CH. For each ordinal $\gamma < \omega_1$, let $A_{\gamma} \subset \gamma$, and assume $\gamma \neq \delta \longrightarrow |A_{\gamma} \cap A_{\delta}| < \omega$. Show that there is an uncountable set $\chi \subset \omega_1$ such that $\gamma, \delta \in \chi \longrightarrow \gamma \not \in A_{\delta}$.
- 4. Assume V=L. Show that $\{\alpha < \omega_l : L(\alpha) \text{ is point-definable }\}$ is unbounded in ω_l and not stationary. A set A is called point-definable iff every element of A is first-order definable in (A, ϵ) .
- 5. Let G be a family of countable sets such that $|G| = \omega_2$. Show that there is a B C G and a countable r such that $|B| = \omega_2$ and

Don't assume CH.