
Qualifying Exam
Logic

August 1997

Instructions: If you signed up for Set Theory, do two E and two S prob-
lems. If you signed up for Model Theory, do two E and two M problems.

If you think that a problem has been stated incorrectly, mention this to
the proctor and indicate your interpretation in your solution. In such cases,
do not interpret the problem in such a way that it becomes trivial.

E1. Given a (nonabelian) group G we say that a linear order ≤ on G
left-orders G iff for any x, y, z ∈ G if x ≤ y then zx ≤ zy. Prove that a
group G can be left-ordered iff every finitely generated subgroup of it can be
left-ordered.

E2. For any set of reals A and B define

A + B = {a + b : a ∈ A and b ∈ B}

Prove there exists a set of reals A such that A+A = R but A fails to contain
an uncountable closed set of reals. Note that every uncountable closed set
has the same size as the set of all reals.

E3. Give an example (with proof) of a theory T in some language L such
that T is not finitely axiomatizable, but is the reduct of a finitely axioma-
tizable theory. That is, you would have a finitely axiomatizable T ′ in some
language L′ ⊃ L such that the models of T are precisely the reducts to L of
the models of T ′.
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S1. Let X be any infinite set and let [X]ω be the countably infinite subsets
of X. Show that there exists a function

F : [X]ω → [X]ω

such that for every A ∈ [X]ω there exists a ∈ A such that a ∈ F (A \ {a}).

S2. Let P = 2<ω. Let G be P-generic over M a transitive model of
set theory (not necessarily countable). Let cM be the cardinality of the
continuum in M . Show that there exists 〈Gα : α < cM〉 ∈ M [G] such that

• Gα is P-generic over M for every α and

• α < β implies Gα 6= Gβ.

S3. Assume that ZFC has a transitive model. Let ZFCn be the first n
axioms of ZFC.

(a) Show there is a model of “ZFC + Con(ZFC) + ZFC has no transitive
model”

(b) Show there is a model of “ZFC + Con(ZFC) + exists n such that
ZFCn has no transitive model”
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M1. Let U be a distinguished unary predicate in the language L. An
L-structure has type (κ, λ) iff the universe has cardinality κ and the inter-
pretation of U in the structure has cardinality λ. Let κ0 = ω and for every
n < ω let κn+1 = 2κn . Let κ = supn<ω κn. Let c be the cardinality of the
continuum. Assume that at least one of |L| and κω is no more than κ+.
Prove that every L-structure of type (κ, c) has an elementary extension of
type (κ+, c).

M2. Let T be defined as follows:
(a) T has unary predicates P and Q and a three place predicate E, written

as yExz,
(b) the universe of any model of T is the disjoint union of P and Q, each

infinite,
(c) if yExz, then P (x), Q(y) and Q(z),
(d) for any fixed x in P , Ex is an equivalence relation on Q with infinitely

many equivalence classes, and
(e) if n < ω and x1, . . . , xn ∈ P with no repetition, and y1, . . . yn ∈ Q,

then for some y ∈ Q we have that for all 1 ≤ l ≤ n the relation yExl
yl holds.

(f) If n,m < ω and x1, . . . xn ∈ P , while A1, . . . Am are disjoint finite
subsets of Q, there is x ∈ P distinct from x1, . . . xn such that A1, . . . Am are
subsets of different Ex equivalence classes.

Note: we obtain a logically equivalent theory if we demand that y in (e)
is different than each y1, . . . yn.

Show that T has elimination of quantifiers.

M3. Prove that a countable complete theory which has uncountably many
types has continuum many pairwise nonisomorphic countable ω-homogeneous
models.
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Answers to Logic Qual August 1997

E1. Use the compactness theorem for propositional logic. For each x, y ∈
G, let px,y be a proposition letter which “says” that x ≤ y. Then, construct
a propositional theory Σ which describes the order. For example, for each
x, y, z ∈ G, the sentence px,y ⇒ pzx,zy will be in Σ. You also need some
sentences describing the properties of a linear order, such as px,y∨py,x for each
x, y. The hypothesis on finitely generated subgroups guarantees that every
finite subset of Σ is consistent, and then, a model (i.e., truth assignment) for
all of Σ tells you how to order the group.

E2. List the reals as {rα : α < c}, and list the closed uncountable sets
as {Cα : α < c}. Construct A as an increasing union of sets: A =

⋃
α<c Aα,

where each |Aα| < c. At limits, take unions, and each |Aα+1\Aα| ≤ 2. Also
choose reals, pα, for α < c. Given Aα, choose pα in Cα \ (Aα − Aα); then
construct Aα+1 so that Aα+1 − Aα+1 contains rα and Aα+1 does not contain
pξ for any ξ ≤ α.

E3. Let L = ∅, so that T is a pure equality theory. Let T say that all
its models are infinite. Let L′ = {<}, and let T ′ say that < is a total order
with no largest element.

S1. Let A ≡ B iff A∆B is finite. Choose a representative for each class
and let F map each element of the equivalence class to its representative.

S2. Working in M : Let {Qα : α < cM} be a family of pairwise almost
disjoint infinite subsets of ω. For each α let fα : ω → Qα be the increasing
enumeration of Qα.

Then, in M [G]: Define Gα : ω → 2 by Gα(n) = G(fα(n)). Each Gα

corresponds, in a natural way, to a filter on P.

S3.

(a) Take any transitive model of least rank.

(b) Note that you can’t get a transitive model here (by reflection). How-
ever, for each m, let Tm be the theory:

ZFCm+CON(ZFC)+‘∃n such that ZFCn has no transitive model’.
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Each Tm has a (transitive) model, since (for m large enough), Tm is true in
a minimal rank model of ZFCm. The result now follows by the Compactness
Theorem.

M1. Take an ω-ultrapower of the model. In the case the language is small
take an elementary substructure.

M2. Solution 1: Do the elimination of quantifiers directly, defining an
arrangement of x1, . . . xn as a formula which specifies which xi’s are P and
which Q, which xi, xj are equal to each other, and for each xk in P and xi, xj

in Q, tells if xiExk
xj or not. Use axioms (d) and (e) in the crucial step of

the argument.

Solution 2: Use the notion of model completeness. First observe that T
is a consistent theory. Notice that T∀ is the theory of equivalence relations,
which has the amalgamation property. It suffices to show that T is the model
completion of T∀. This can be done by considering all models of T∀ which are
existentially closed for T∀. Else, we can show that T is model complete by
Robinson’s test, or we can use a syntactical characterization (see e.g Theorem
3.5.17 in Chang-Keisler’s book).

M3. If a countable theory has uncountably many types, then it has
continuum many n-types for some n. Every countable model in a count-
able language extends to a countable ω-homogeneous model, so every n-type
is realized in some countable ω-homogeneous model. Since each countable
model can realize only countably many types, there must be continuum many
non-isomorphic countable ω-homogeneous models.

5


