
Qualifying Exam
Logic

January 2008

Instructions:

If you signed up for Computability Theory, do two E and two C problems.
If you signed up for Model Theory, do two E and two M problems.
If you signed up for Set Theory, do two E and two S problems.

If you think that a problem has been stated incorrectly, mention this
to the proctor and indicate your interpretation in your solution. In such
cases, do not interpret the problem in such a way that it becomes trivial.

E1. Let β be an ordinal. Assume that β = X ∪ Y and that X, Y both
have order type α > 0.

a. Prove that β < α + α + α.
b. Give an example where α + α < β.

E2. Prove that the following are equivalent for any consistent first order
theory T in a finite L which is not finitely axiomatizable:

a. T has a computable set of independent axioms.
b. T has a set of axioms which can be computably enumerated as

θ0, θ1, θ2, . . ., so that for every n, θn+1 → θn is logically valid, but
θn → θn+1 is not.

c. Whenever ρ0, ρ1, ρ2, . . . is any computable enumeration of some
set of axioms for T , there exists a strictly increasing computable
function f : ω → ω such that for every n:∧

k≤n

ρk does not imply
∧

k≤f(n)

ρk .

In (a): a set of axioms Σ for T is “independent” if no ϕ ∈ Σ is provable
from Σ\{ϕ}.

E3. A dense tree is a model (T,≤,∧) where ≤ is a partial ordering and
∧ is a meet operation (i.e., x ∧ y is the greatest lower bound of x and y)
with the following additional properties:

(1) For each x ∈ T , the set of predecessors {y | y < x} is a dense
linear order without endpoints.

(2) For each x ∈ T , there are y, z > x with x = y ∧ z.
(3) For any pairwise incomparable x, y, z ∈ T , exactly two of x ∧ y,

x ∧ z, and y ∧ z are equal.

Show that there is exactly one countable dense tree (up to isomorphism).
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Computability Theory

C1. A function f : ω → ω is an order function if it is total, nondecreasing
and has unbounded range. Show that the set of all e ∈ ω such that ϕe is
an order functions is Π0

2-complete.

C2. Show that no computable set C can have the property that both
it and its complement are the sets of fixed points of two computable
functions f and g; i.e., it is impossible that C = {e | ϕe = ϕf(e)} and

C = {e | ϕe = ϕg(e)}.

C3. An enumeration of a collection C of subsets of ω is a set A such that
C = {A[e] | e ∈ ω} (where A[e] = {x | 〈x, e〉 ∈ A}).

(1) Show that there is no computable enumeration of the collection
of all computable sets.

(2) Show that there is a computably enumerable enumeration of the
collection of all computable sets without repetition (i.e., the set A
above satisfies A[e] 6= A[i] for all distinct e and i).
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Model Theory

M1. Is the following situation possible? Either give an example, or give
a proof that it’s not possible:

1. A and B are L–structures with A ≺ B.
2. R /∈ L is a new n–place relation symbol (with 1 ≤ n < ω), and T

is an L ∪ {R} theory.
3. There is a unique RA ⊆ An such that (A; RA) |= T .
4. There is a unique RB ⊆ Bn such that (B; RB) |= T .
5. RB ∩ An 6= RA.

M2. Let Σ be the theory of infinite dimensional vector spaces over al-
gebraically closed fields of characteristic 0. To formalize Σ, let L =
{S, V, +, ·}, where S, V are unary predicates and +, · are binary func-
tions. Then Σ says that S, V partition the universe into two disjoint
non-empty sets, and that the scalars, S, form an algebraically closed
field of characteristic 0, and the vectors, V form an infinite dimensional
vector space over S. Models will then have both a zero scalar, 0 ∈ S,
and a zero vector, ~0 ∈ V . Define x + y and x · y to be 0 when it would
normally be nonsense; for example, x + y = 0 when x ∈ S and y ∈ V ,
and x · y = 0 when x, y ∈ V . Then:

1. Prove that Σ is complete and ω–stable.
2. Prove that Σ is not κ–categorical for any κ ≥ ℵ0.
3. Prove that Σ has ≤ κ models of size κ for all κ ≥ ℵ0.
4. For which κ ≥ ℵ0 does Σ have exactly κ models of size κ?

M3. Assume that L is countable and contains the symbol <. Let Σ
be a complete L–theory such that for some A |= Σ, <A well-orders A in
type ω1. For any non-well-ordered B |= Σ, let the ordinal W (B) be its
well-ordered initial segment; so <B consists of a well-order of type W (B),
followed by a total order with no least element. Then prove:

1. For any non-well-ordered B |= Σ, W (B) is a limit ordinal.
2. The set of all W (B) such that B is a countable non-well-ordered

model of Σ is unbounded in ω1.
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Set Theory

S1. Assume MA(ℵ1), and let E be an uncountable subset of the plane,
R2. Prove that there is a Cantor set K ⊆ R2 such that K contains
uncountably many points of E.

K is a Cantor set iff K is homeomorphic to the standard middle-third
Cantor set (or to 2ω).

S2. For this problem, a nice tree is a set T of non-empty closed subsets
of [0, 1] such that for all H, K ∈ T : H ⊆ K or K ⊆ H or K ∩ H = ∅.
Note that then for each K ∈ T : {H ∈ T : H ⊃ K} is totally ordered by
⊃ (although not necessarily well-ordered). Prove that there is a nice tree
which is an Aronszajn tree under the order ⊃ (that is, %).

Remarks. So, now each {H ∈ T : H ⊃ K} will be well-ordered by ⊃ in
some countable type. The root node, which is the largest set in T , could
be [0, 1], although it might be simpler to make all the nodes Cantor sets.
Level α of T is Lα := {K ∈ T : type({H ∈ T : H ⊃ K}) = α}. Then
Lα must be countable (by the definition of “Aronszajn”). It is natural to
construct Lα inductively, but you have to be careful that the construction
doesn’t die at limit ordinals.

S3. Use the following (standard) definition of the constructible sets:

L(0) = ∅
L(α + 1) = D(L(α))

L(γ) =
⋃
α<γ

L(α) for limit α

Here, D(A) is the set of all subsets of A which are (first-order) definable
in (A;∈) using finitely many elements of A as parameters. Let D−(A) ⊆
D(A) be the set of those subsets of A which are definable in (A;∈) without
using any parameters; so D−(A) is always countable. Prove that the set
of all α such that L(α+1) = D−(L(α)) is an unbounded subset of (ω1)

L.
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Answers

E1. For (b), let β = ω + ω + 2 and α = ω + 1.
For (a): Find an ordinal δ and positive integer n such that

ωδ · n ≤ β < ωδ · (n + 1).

Ordinals of the form ωδ are strongly indecomposable, i.e, if X ∪ Y = ωδ,
then at least one of X or Y has order type ωδ. Write

ωδ · n = L1 + L2 + · · ·Ln

where each Li has order type ωδ. Then for each i either X ∩Li or Y ∩Li

has order type ωδ. So there exists Σ ⊆ {1, . . . , n} with |Σ| ≥ n/2 such
that either

(1) X ∩ Li has order type ωδ for all i ∈ Σ or
(2) Y ∩ Li has order type ωδ for all i ∈ Σ.

Then since 3|Σ| ≥ n + 1 we have the result.

E2. (a) → (b): Given an independent set of axioms {ϕn : n < ω} take

θn =
∧
k≤n

ϕk.

(b) → (c): Recall that there is an effective enumeration of all logical
validities. For any n we can effectively find some θm such that

θm →
∧
k≤n

ρk

is a validity. Since the ρ’s are axioms for T we can effectively find some
f(n) such that ∧

k≤f(n)

ρk → θm+1.

(c) → (b): Take a sequence ln+1 = f(ln) and put θn =
∧

k≤ln
ρk.

(b) → (a): Put ϕ0 = θ0 and ϕn+1 = (θn → θn+1).

E3. A representation of a countable dense tree is the set of all functions
of the form f : Q ∩ (−∞, r) → {0, 1} which take the value 1 for only
finitely many arguments and where r ∈ Q, ordered by extension.

Uniqueness follows by a Cantor-style back-and-forth argument: Sup-
pose you have a finite partial isomorphism p from a countable dense tree
T1 to a countable dense tree T2. Fix a ∈ T1 − dom(p). (The argument
for b ∈ T2 − ran(p) is symmetric.) Then there are two cases:

Case 1: There is some (least) t ∈ dom(p) with a < t: Then the
collection U = {t′ ∧ t | t′ ∈ dom(p) and t′ 6≥ t} is linearly ordered, and
we can use the density of T2 and clause (3) to find an image for a among
or between the images of p(U).
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Case 2: Otherwise and there is some (greatest) t ∈ dom(p) with a > t:
Then use clause (2) to find an image for a.

Case 3: Otherwise: Then a is incomparable with all of dom(p), so fix
an element below the meet of ran(p) and use clause (2) to find an image
for a.

C1. Let I be the set of all e such that ϕe is an order function. Then
I is clearly Π0

2. Now, let A ⊆ ω be any Π0
2 set; we show that A ≤m I.

Write A as {x : ∀y∃zP (x, y, z)}, where P is computable. Then there is a
computable Γ : ω → ω such that for all x, ϕΓ(x) is the (partial) function

t 7→
∑
y≤t

[1 + µzP (x, y, z)] .

If x ∈ A, then ϕΓ(x) is total and Γ(x) ∈ I. If x /∈ A, then Γ(x) /∈ I
because ϕΓ(x) is not total (and has finite domain).

C2. Given C, f, g, let h(e, x) be the partial computable function such
that if e ∈ C, then h(e, x) = ϕg(e)(x) for all x; and if e /∈ C, then
h(e, x) = ϕf(e)(x) for all x. By the Recursion Theorem, fix e such that
ϕe is the (partial) function x 7→ h(e, x). If e ∈ C, then ϕe = ϕg(e), but

then e ∈ C, a contradiction. If e ∈ C, then ϕe = ϕf(e), but then e ∈ C,
also a contradiction.

C3.

(1) By simple diagonalization.
(2) See Odifreddi I for the proof of the Friedberg theorem of an enu-

meration of all c.e. sets without repetition and its variations.

M1. This question is due to J.Millar.
There are many examples here, all revolving around the observation

that a relation implicitly definable in a given model need not be explic-
itly definable. Note that Beth’s Theorem requires that the relation be
implicitly defined in all models of a theory.

Specifically, let L = {<}, and let R be unary. Let T0 be the theory of
dense total orders without first or last elements. Then T0, as an L–theory,
is complete and model-complete. Let T be T0 plus the statement that
R is an un-realized Dedekind cut; so T says of a model (A; RA) that RA

and A\RA are both non-empty, RA is an initial segment with no largest
element and A\RA is a final segment with no smallest element.

A given dense total order may have no subsets satisfying T (e.g, R) or
infinitely many subsets satisfying T (e.g, Q).

Now, let A = (−∞, 0) ∪ (1, 2) ∪ [4,∞) ⊂ R, with the usual order of
real numbers. Then there is a unique RA ⊆ A such that (A; RA) |= T ;
namely, RA = (−∞, 0); note that (1, 2) ∪ [4,∞) ∼= R has no unrealized
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Dedekind cuts. Let B = R\{3}. Then there is a unique RB ⊆ B such
that (B; RB) |= T ; namely, RB = (−∞, 3). Clearly, RB ∩ A 6= RA.

M2. First note that every A |= Σ of size ℵ0 or ℵ1 has an elementary
extension B of size ℵ1 whose S has transcendence degree ℵ1 and whose
dim(V ) = ℵ1. Since such a B is unique up to isomorphism, Σ must be
complete. Also, if Σ failed to be ω–stable, there would be a countable
E ⊂ B such that B realizes ℵ1 1–types over E; but this is impossible
because the group of automorphisms of B pointwise fixing E has only
countably many orbits.

For (2)(3): Note that the A |= Σ of size κ = ℵα are characterized
by the transcendence degree λ of S, which is some (possibly finite) car-
dinal ≤ κ, and dim(V ), which is some infinite cardinal ≤ κ; of course,
max(λ, dim(V ),ℵ0) = κ. There are exactly max(α,ℵ0) ≤ κ such models.

Now (4) follows: max(α,ℵ0) = κ iff κ = ℵ0 or κ = ℵκ.

M3. For (1), just note that A satisfies the statement that every element
has a successor.

For (2): WLOG, A = ω1, with <A the usual order. Let C be the set
of γ < ω1 such that the ordinals < γ form an elementary submodel of
A; then C is unbounded in ω1 (and also closed). It is sufficient to show
that for each γ ∈ C, there is a countable non-well-ordered B |= Σ with
W (B) ≥ γ; in fact, one can get W (B) = γ, but that’s not required by
the problem. Fix γ ∈ C, and let G ≺ A be the model built on γ. Since G
is countable and satisfies the axioms that the ordering of its universe is
regular, a standard argument produces an elementary end extension H of
G. H is usually built using the elementary diagram of G, together with
one new constant c which is larger than all elements of G. The Omitting
Types Theorem is used to guarantee that H is really an end extension.
This H could conceivably be well-ordered. To avoid this, modify the
standard argument to use new constants cn for n ∈ ω, where each cn is
larger than all elements of G and c0 > c1 > c2 > · · · .

S1. Note that you cannot simply quote the fact that E must be of
first category, since a closed nowhere dense subset of the plane might be
connected.

Proof 1. (specific to the plane): WLOG, |E| = ℵ1. By changing
coordinates, we may assume that the coordinate axes are not parallel to
any of the ℵ1 lines through pairs of points in E. Then, the coordinate
projections π1 and π2 are 1-1 on E. In the line, every first category set is
covered by countably many Cantor sets, so choose a Cantor set K1 ⊆ R
such that E ∩ π−1

1 (K1) is uncountable. Repeat the argument and choose
a Cantor set K2 ⊆ R such that (E ∩ π−1

1 (K1))∩ π−1
2 (K2) is uncountable.

Let K = K1 ×K2.
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Proof 2. (works in any Polish space X). Force a generic Cantor set K
using a finitely branching tree of basic open sets.

S2. As indicated in the Remarks, we construct Lα inductively, with all
nodes in the tree Cantor subsets of [0, 1]. L0 can be a singleton (the
root node), and each node will have ℵ0 children. Note that the tree will
automatically be Aronszajn because there cannot be a decreasing ω1–
sequence of closed sets. The problem is that the construction doesn’t die
at a limit ordinal.

Say γ < ω1 is a limit and we have Lα for α < γ. Let Tγ =
⋃

α<γ Lα,
which is a countable tree of height γ. Whenever C is a maximal chain
in Tγ,

⋂
C is a closed subset of 2ω, and is non-empty by compactness,

although it may be a singleton. If all these
⋂
C are singletons (or count-

able), the construction cannot proceed.
To ensure that suitably many of the

⋂
C are Cantor sets, we inductively

maintain the following condition: Whenever α < β < ω1 and F ∈ Lα and
P is a finite family of non-empty clopen subsets of F , there is a G ∈ Lβ

such that G ⊂ F and G ∩ P 6= ∅ for all P ∈ P .

S3. We can work within L; so WLOG V = L, and we’re proving that
S := {α : L(α + 1) = D−(L(α))} is an unbounded subset of ω1. Now
S ⊆ ω1 since L(α) ⊂ L(α + 1) and D−(L(α)) must be countable. If S is
bounded, let β = sup{α + 1 : α ∈ S} < ω1. Let M ≺ L(ω1) = H(ω1) be
the Skolem hull of ∅ in L(ω1) using the definable Skolem functions. Then
M is transitive and of the form L(γ). Each element of M is definable in
M (without parameters), so γ ∈ S and hence γ < β. But β is definable
in L(ω1), so β ∈ L(γ), a contradiction.
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