A topological approach to undefinability in algebraic extensions of the rationals

Linda Westrick

Penn State University

UW-Madison Logic Seminar

Joint with Kirsten Eisenträger, Russell Miller & Caleb Springer

December 15, 2021
Outline

1. Preliminaries
2. Bird’s eye view
3. Normal form theorem
4. Things happen for a reason
In pursuit of a definition of \(\mathbb{Z} \)

Let \(\overline{\mathbb{Q}} \) be the algebraic closure of \(\mathbb{Q} \).

For fields \(L \subseteq \overline{\mathbb{Q}} \), we are interested in what subsets of \(L \) are first-order definable in the structure \((L; 0, 1, +, \cdot)\).

Example. If \(\mathbb{Z} \) were existentially definable in \(\mathbb{Q} \), Hilbert’s Tenth Problem over \(\mathbb{Q} \) would be resolved, but this problem is too hard.

Question 1: In which fields \(L \subseteq \overline{\mathbb{Q}} \) is \(\mathbb{Z} \) existentially definable?

Definition: The *algebraic integers* \(\mathcal{O}_L \) of \(L \) are exactly those \(z \in L \) which are a root of a *monic* polynomial in \(\mathbb{Z}[X] \).

(But for this talk we only need the fact that \(\mathcal{O}_L \cap \mathbb{Q} = \mathbb{Z} \))

Question 2: In which fields \(L \subseteq \overline{\mathbb{Q}} \) is \(\mathcal{O}_L \) existentially definable?
A topology on subfields of $\overline{\mathbb{Q}}$

Define $\text{Sub}(\overline{\mathbb{Q}}) = \{ L \subseteq \overline{\mathbb{Q}} : L \text{ is a field} \}$.

Topology: declare that for each $a \in \overline{\mathbb{Q}}$, $\{ L : a \in L \}$ is clopen.

(Equivalently, identifying $L \in \text{Sub}(\overline{\mathbb{Q}})$ with its characteristic function, $\text{Sub}(\overline{\mathbb{Q}}) \subseteq \{0, 1\}^\overline{\mathbb{Q}}$ inherits the product topology.)

A basis: for every pair of finite sets $A, B \subseteq \overline{\mathbb{Q}}$, define

$$U_{A,B} = \{ L \in \text{Sub}(\overline{\mathbb{Q}}) : A \subseteq L \text{ and } L \cap B = \emptyset \}$$

Fact: $\text{Sub}(\overline{\mathbb{Q}})$ is homeomorphic to Cantor space $\{0, 1\}^\mathbb{N}$.
Baire Category

A subset S of a topological space X is nowhere dense if for every non-empty open U, there is a non-empty open $V \subseteq U$ such that $V \cap S = \emptyset$.

A meager set is a countable union of nowhere dense sets.

Meager sets are closed under countable unions.

By the Baire Category Theorem, Cantor space is not meager. Thus, neither is $\text{Sub}(\mathbb{Q})$.
A simple normal form for existential formulas

Given any existential formula $\alpha(X)$ in the language of rings:

- Express in disjunctive normal form

 $$\alpha(X) \equiv \exists \vec{Y}[\alpha_1(X, \vec{Y}) \lor \cdots \lor \alpha_r(X, \vec{Y})]$$

 where each α_j is a conjunction of equations and inequations,

 $$\alpha_j \equiv (f_1 = 0) \land \cdots \land (f_n = 0) \land (g_1 \neq 0) \land \cdots \land (g_k \neq 0)$$

- Distribute \exists over \lor:

 $$\alpha \equiv (\exists \vec{Y} \alpha_1) \lor \cdots \lor (\exists \vec{Y} \alpha_r)$$

- Combine inequations, so that each α_i takes the form

 $$\alpha_i \equiv f_1 = \cdots = f_k = 0 \neq g$$
A simple normal form for existential formulas, cont’d

- Remove unused variables (so different clauses may have different lengths of \vec{Y}.)
- Thus α can always be rewritten as a finite disjunction

$$\alpha \equiv \bigvee_{i<r} \beta_i$$

where each β_i takes the form

$$\beta_i \equiv \exists \vec{Y}(f_1 = \cdots = f_k = 0 \neq g)$$

(or, with all variables shown,

$$\beta_i(X) = \exists \vec{Y}[f_1(X, \vec{Y}) = \cdots = f_k(X, \vec{Y}) = 0 \neq g(X, \vec{Y})]$$)
1. Preliminaries
2. *Bird’s eye view*
3. Normal form theorem
4. Things happen for a reason
Main theorem

Let \(S = \{ L \in \text{Sub}(\mathbb{Q}) : \text{for some } A \subseteq L, \)
\[A \text{ is one-quantifier definable in } L \text{ and } A \cap \mathbb{Q} = \mathbb{Z} \}\}

Main Theorem: \(S \) is meager.

This includes any \(L \) for which:
- \(\mathcal{O}_L \) is existentially or universally definable in \(L \)
- \(\mathbb{Z} \) is existentially or universally definable in \(L \)
Normal form for existential definitions

A polynomial $p \in \overline{\mathbb{Q}}[X, \vec{Y}]$ is called *absolutely irreducible* if it is irreducible over $\overline{\mathbb{Q}}$.

Theorem: (Normal Form Theorem for existential definitions) Let $L \in \text{Sub}(\overline{\mathbb{Q}})$ and suppose that $A \subseteq L$ is existentially definable in L. Then A has an existential definition in L of the form

$$\alpha(X) = \bigvee_{i < r} \beta_i(X)$$

where each $\beta_i(X)$ has one of the following forms:

(i) The quantifier-free formula $X = z_0$ for a fixed $z_0 \in L$.

(ii) $\exists \vec{Y}[f = 0 \neq g]$, where $f, g \in L[X, \vec{Y}]$ and f is absolutely irreducible.
Hilbert’s Irreducibility Theorem

A number field is any field of the form $\mathbb{Q}(A)$ where $A \subseteq \overline{\mathbb{Q}}$ is finite.

If K is a number field, there is a notion of smallness for subsets $T \subseteq K^n$ called thinness which is due to Serre.

Facts: For any number field K,

- Neither \mathbb{Z} nor $\mathbb{Q} \setminus \mathbb{Z}$ is thin in K.
- Neither $\mathbb{Z} \times \mathbb{Q}^{n-1}$ nor $(\mathbb{Q} \setminus \mathbb{Z}) \times \mathbb{Q}^{n-1}$ is thin in K^n.

Theorem. (Hilbert’s Irreducibility Theorem) Suppose K is a number field and $f \in K[Y_0, \ldots, Y_m]$ is irreducible over K. Then there is a thin set $T \subseteq K^m$ such that for all $y_0, \ldots, y_{m-1} \not\in T$, $f(y_0, \ldots, y_{m-1}, Y_m)$ remains irreducible over K.
Proof of a special case of the main theorem

Claim: \(\{ L \in \text{Sub}(\mathbb{Q}) : Z \text{ is existentially definable in } L \} \) is meager.

For each formula \(\alpha(X) \) in normal form, let

\[S_\alpha = \{ L : \alpha \text{ defines } \mathbb{Z} \text{ in } L \} \]

Suffices to show: Each \(S_\alpha \) is nowhere dense.

Given nonempty \(U_{A,B} \), we seek \(z \in \overline{\mathbb{Q}} \) such that

\[U_{A \cup \{z\},B} \neq \emptyset \text{ and } U_{A \cup \{z\},B} \cap S_\alpha = \emptyset. \]

(Easy if all disjuncts are \(X = z_0 \), ignore that case)

Fix a disjunct \(\beta(X) = \exists Y_1, \ldots, Y_m[f(X, \vec{Y}) = 0 \neq g(X, \vec{Y})] \).

We will add \(z \) to “mess up” \(\beta \) by making sure \(\beta(x) \) holds for some \(x \in \mathbb{Q} \setminus \mathbb{Z} \).
What could go wrong?

Work in $U_{\emptyset,\{\sqrt{2}\}}$ (fields that do not contain $\sqrt{2}$). Consider

$$\beta(X) = \exists Y [2X^2 - Y^2 = 0]$$

Task: Find $x \in \mathbb{Q} \setminus \mathbb{Z}$ and $y \in \overline{\mathbb{Q}}$ which satisfy β and with $\sqrt{2} \notin \mathbb{Q}(y)$.

Impossible, because $\left(\frac{Y}{X}\right)^2 = 2$. (Things failed for a reason.)

Note: $f = 2X^2 - Y^2$ is irreducible in all fields which avoid $\sqrt{2}$. But f is not absolutely irreducible: $(\sqrt{2}X - Y)(\sqrt{2}X + Y)$.

Proof of a special case of the main theorem, II

Working inside $U_{A, B}$, given $\beta(X) = \exists Y_1, \ldots, Y_m[f(X, \bar{Y}) = 0]$

(Ignoring g now for simplicity.)

- Let $K = \mathbb{Q}(A \cup B)$. Then f remains irreducible over K
 (because f was absolutely irreducible).
- By Hilbert Irreducibility Thm, for all x, y_1, \ldots, y_{m-1} outside a
 thin set, $f(x, y_1, \ldots, y_{m-1}, Y_m)$ remains irreducible over K.
- But $\mathbb{Q} \setminus \mathbb{Z} \times \mathbb{Q}^{m-1}$ is not thin, so fix x, y_1, \ldots, y_{m-1} from it.
- Lemma: since $f(x, y_1, \ldots, y_{m-1}, Y_m)$ has coefficients from
 $\mathbb{Q}(A)$ but is irreducible over $\mathbb{Q}(A \cup B)$, for any root z of f,
 $\mathbb{Q}(A \cup \{z\})$ is disjoint from B.

Thus we have $x \in \mathbb{Q} \setminus \mathbb{Z}$, but $\beta(x)$ holds for all L containing
$A \cup \{z\}$. So α does not define \mathbb{Z} in any $L \in U_{A \cup \{z\}, B}$.
Computable fields with one-quantifier undefinable integers

Theorem: Computable fields in which \mathbb{Z} is not existentially definable are dense in $\text{Sub}(\overline{\mathbb{Q}})$.

The following operations are computable:
- Is a polynomial f absolutely irreducible?
- Is a given $U_{A,B}$ empty?

The first point allows us to list all formulas β we need to defeat. Every β is defeatable.

The second point allows us to know when we have defeated a given β: Search $x, y_1, \ldots, y_{m-1}, z$ until finding a root with $x \in \mathbb{Q} \setminus \mathbb{Z}$ and $U_{A \cup \{z\}, B} \neq \emptyset$.

Perhaps some nicer field which has “enough” roots could defeat all β naturally, but we do not have a specific example.
Outline

1. Preliminaries
2. Bird’s eye view
3. Normal form theorem
4. Things happen for a reason
Normal form for existential definitions

Theorem: (Normal Form Theorem for existential definitions) Let $L \in \text{Sub}(\mathbb{Q})$ and suppose that $A \subseteq L$ is existentially definable in L.

Let $\alpha(X) = \bigvee_{i<r} \beta_i(X)$ be “simplest” among all existential L-formulas which define A in L.

Then each $\beta_i(X)$ has one of the following forms:

(i) The quantifier-free formula $X = z_0$ for a fixed $z_0 \in L$.

(ii) $\exists \vec{Y}[f = 0 \neq g]$, where $f, g \in L[X, \vec{Y}]$ and f is absolutely irreducible.
Well-orderings

A linear order \((L, <)\) is a well-order if it has no infinite descending sequence \(x_1 > x_2 > \ldots\)

Example: Define the *multidegree* of a term \(X^{d_0} Y_1^{d_1} \ldots Y_m^{d_m}\) to be the tuple \((d_0, \ldots, d_m)\). Order the multidegrees in reverse lexicographical order. This is a well-order.

Definition: The *multidegree* of a polynomial \(f \in \mathbb{Q}[X, \vec{Y}]\) is the maximum of the multidegrees of its terms.
Well-ordering multisets

Definition: Given a linear order \((L, <)\), define its *multiset order* \((L^*, <^*)\) as follows.

- \(L^*\) is the set of finite multisets with elements from \(L\).
- If \(C, D \in L^*\), we define \(C <^* D\) if
 - \(C\) is empty and \(D\) is not, or
 - \(\max C < \max D\), or
 - \(\max C = \max D\) and \(C' <^* D'\), where \(C'\) and \(D'\) are obtained by removing one maximum element from each.

Lemma: If \((L, <)\) is well-ordered, so is its multiset order.

Definition: Define the *multidegree* of a set of polynomials \(\{f_1, \ldots, f_k\}\) to be the multiset of multidegrees of these polynomials, ordered by the multiset order. This is a well-order.
Dimension of a variety

To any system of equations and inequations

\[f_1(X, Y_1, \ldots, Y_m) = \cdots = f_k(X, \vec{Y}) = 0 \]
\[g_1(X, \vec{Y})g_2(X, \vec{Y}) \cdots g_r(X, \vec{Y}) \neq 0 \]

we may associate a notion of dimension which is a natural number related to the size of the solution set.

(Take Spec(\(\mathbb{C}[X, \vec{Y}]\)) with the Zariski topology. The Krull dimension of \(W \subseteq Spec(\mathbb{C}[X, \vec{Y}])\) is the supremal length \(r\) of a chain of irreducible closed subsets \(Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_r \subseteq W\). Use \(W = V((f_1, \ldots, f_k)) \cap D(g)\).

Example: The dimension of the sphere \(X^2 + Y_1^2 + Y_2^2 = 1\) is 2.

Facts: Starting from a system as above,

- Additional equations/inequations don’t increase the dimension
- Additional *non-redundant equations* strictly decrease the dimension
Rank of a basic existential formula

Definition A *basic rankable formula* $\beta(X)$ is a formula of the form

$$\beta = \exists \vec{Y}[f_1 = \cdots = f_k = 0 \neq g], \text{ where } f_1, \ldots, f_k, g \in \overline{\mathbb{Q}}[X, \vec{Y}].$$

Definition The *rank* of a basic rankable formula as above is a triple (m, d, M), where

- m is the number of Y-variables
- d is the dimension of $f_1 = \cdots = f_k = 0 \neq g$
- M is the multidegree of $\{f_1, \ldots, f_k\}$

and we order the ranks in lexicographic order. This is a well-order.

Thus β_1 has smaller rank than β_2 if either

- β_1 uses fewer Y’s, or
- $m_1 = m_2$ and β_1 has the smaller dimension, or
- $m_1 = m_2$ and $d_1 = d_2$, but β_1 uses smaller equations, as measured by the multidegree of the set of equations.
Recall: Every existential formula $\alpha(X)$ can be expressed as a finite disjunction of basic rankable formulas $\alpha(X) = \bigvee_{i < r} \beta_i(X)$.

Definition: The rank of an existential formula α as above is the multiset of ranks of its β_i, and we order the ranks using the multiset order. This is a well-order.
Normal form for existential definitions

Theorem: (Normal Form Theorem for existential definitions) Let \(L \in \text{Sub}(\mathcal{Q}) \) and suppose that \(A \subseteq L \) is existentially definable in \(L \).

Let \(\alpha(X) = \bigvee_{i < r} \beta_i(X) \) have minimal rank among all existential \(L \)-formulas which define \(A \) in \(L \).

Then each \(\beta_i(X) \) has one of the following forms:

(i) The quantifier-free formula \(X = z_0 \) for a fixed \(z_0 \in L \).

(ii) \(\exists \vec{Y}[f = 0 \neq g] \), where \(f, g \in L[X, \vec{Y}] \) and \(f \) is absolutely irreducible.

Idea: If some \(\beta_i \) does not take one of these forms, we can find a disjunction of basic rankable formulas which define the same subset of \(L \) as \(\beta_i \), but all have lower rank than \(\beta_i \). Replacing \(\beta_i \) by this disjunction produces a formula of lower rank than \(\alpha \).
Example: Why should β_i contain only irreducible f?

Let $L \in \text{Sub}(\mathbb{Q})$.

Suppose an existential formula α contains a disjunct β

$$\beta(X) = \exists \vec{Y}[f = 0 \neq g]$$

and f is reducible in L. Say $f = pq$.

Then in L, $\beta(X)$ defines the same set as:

$$\exists \vec{Y}[p = 0 \neq g] \lor \exists \vec{Y}[q = 0 \neq g]$$

But both disjuncts above have a lower rank than β:

- same number of Y’s
- dimension did not increase
- multidegree of polynomials reduced

Thus the overall multirank is reduced.
Outline

1. Preliminaries
2. Bird’s eye view
3. Normal form theorem
4. Things happen for a reason
An example which fails

Work in $U_{\emptyset, \{\sqrt{2}\}}$ (fields that do not contain $\sqrt{2}$). Consider

$$\beta(X) = \exists Y [2X^2 - Y^2 = 0]$$

Task: Find $x \in \mathbb{Q} \setminus \mathbb{Z}$ and $y \in \overline{\mathbb{Q}}$ which satisfy β and with $\sqrt{2} \notin \mathbb{Q}(y)$.

Impossible, because $\left(\frac{Y}{X} \right)^2 = 2$. (Things failed for a reason.)

Note: $f = 2X^2 - Y^2$ is irreducible in all fields which avoid $\sqrt{2}$. But f is not absolutely irreducible: $(\sqrt{2}X - Y)(\sqrt{2}X + Y)$.
Things happen for a reason

Lemma. Suppose \(f \in F[X, \tilde{Y}] \) and \(f \) is irreducible over \(F \).

Let \(E = \text{Frac} \left(\frac{F[X, \tilde{Y}]}{(f)} \right) := \left\{ \frac{p + (f)}{q + (f)} : p, q \in F[X, \tilde{Y}] \right\} \).

If \(K \) is a finite Galois extension of \(F \) and \(f \) is reducible over \(K \), then there is \(z \in E \) which is “in” \(K \setminus F \)

- (Experts: there is an \(F \)-linear field embedding \(\phi : F(z) \to K \) with \(\phi(z) \in K \setminus F \))
- There is a rational formula \(\frac{p}{q} \) such that for any \(x, \bar{y} \in \overline{Q} \), if \(f(x, \bar{y}) = 0 \) and \(q(x, \bar{y}) \neq 0 \), then

\[
\frac{p(x, \bar{y})}{q(x, \bar{y})} \in K \setminus F.
\]
Absolute irreducibility in the normal form

Fix L. Suppose $\beta(X) = \exists \vec{Y}[f = 0]$ and f is irreducible over L but not absolutely irreducible. We will replace β with finitely many lower-ranked formulas.

Let K be a finite normal extension of \mathbb{Q} which contains all coefficients of all absolutely irreducible factors of f over \mathbb{Q}.

Let $F = L \cap K$. By Lemma, there is $z = \frac{p+(f)}{q+(f)}$ “in” $K \setminus F$.

For all $x, \bar{y} \in L$, $f(x, \bar{y}) = 0 \implies q(x, \bar{y}) = 0$.

(and we can assume q has smaller Y_m-degree than f)

Apply the Euclidean algorithm: $cf = dq + r$

Then in L, $\beta(X)$ is equivalent to

$$\exists \vec{Y}[q = r = 0 \neq c] \lor \exists \vec{Y}[f = c = 0]$$
References