Toward deciding the $\forall \exists$-theory of the Σ^0_2-enumeration degrees

Steffen Lempp

University of Wisconsin-Madison

October 4, 2022

(joint work with Goh, Ng and M. Soskova)
Most “natural” degree structures D are very complicated partial orders and usually follow this pattern:

- The first-order theory of the partial order D is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).
Most “natural” degree structures \mathcal{D} are very complicated partial orders and usually follow this pattern:

- The first-order theory of the partial order \mathcal{D} is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Therefore, computability theorists often study “fragments” of the first-order theory, determined by a bound on the quantifier depth of the formulas:
Most “natural” degree structures \mathcal{D} are very complicated partial orders and usually follow this pattern:

- The first-order theory of the partial order \mathcal{D} is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Therefore, computability theorists often study “fragments” of the first-order theory, determined by a bound on the quantifier depth of the formulas:

- The \exists-theory of \mathcal{D} is decidable (since all finite partial orders embed into \mathcal{D}).
Most “natural” degree structures \mathcal{D} are very complicated partial orders and usually follow this pattern:

- The first-order theory of the partial order \mathcal{D} is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Therefore, computability theorists often study “fragments” of the first-order theory, determined by a bound on the quantifier depth of the formulas:

- The \exists-theory of \mathcal{D} is decidable (since all finite partial orders embed into \mathcal{D}).
- The $\forall\exists$-theory of \mathcal{D} can “often” be shown to be decidable (more later).
Most “natural” degree structures \mathcal{D} are very complicated partial orders and usually follow this pattern:

- The first-order theory of the partial order \mathcal{D} is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Therefore, computability theorists often study “fragments” of the first-order theory, determined by a bound on the quantifier depth of the formulas:

- The \exists-theory of \mathcal{D} is decidable (since all finite partial orders embed into \mathcal{D}).
- The $\forall \exists$-theory of \mathcal{D} can “often” be shown to be decidable (more later).
- The $\exists \forall \exists$-theory of \mathcal{D} can “usually” be shown to be undecidable.
Definition

$A \leq_e B$ if there is an enumeration operator Φ with $A = \Phi(B)$, i.e., there is a c.e. set Φ of pairs (x, F) (of numbers x and finite sets F) denoting that for all x, $x \in A$ iff there is $(x, F) \in \Phi$ with $F \subseteq B$.
In particular, we will focus on the degree structure S_e of the enumeration degrees of the Σ^0_2-sets, which coincides with the enumeration degrees $a \leq 0'_e$. They form a densely ordered countable upper semilattice with least element 0_e (the degree of the c.e. sets) and greatest element $0'_{e}$ (the degree of \overline{K}).
Definition

\[A \leq_e B \text{ if there is an enumeration operator } \Phi \text{ with } A = \Phi(B), \text{ i.e., there is a c.e. set } \Phi \text{ of pairs } (x, F) \text{ (of numbers } x \text{ and finite sets } F) \text{ denoting that for all } x, x \in A \text{ iff there is } (x, F) \in \Phi \text{ with } F \subseteq B. \]

In particular, we will focus on the degree structure \(S_e \) of the enumeration degrees of the \(\Sigma^0_2 \)-sets, which coincides with the enumeration degrees \(a \leq 0'_{e} \). They form a densely ordered countable upper semilattice with least element \(0_e \) (the degree of the c.e. sets) and greatest element \(0'_e \) (the degree of \(\overline{K} \)).

For \(S_e \), the \(\exists \)-theory is decidable by Lagemann (1972), whereas the \(\exists \forall \exists \)-theory is undecidable by Kent (2006).

The full first-order theory is as complicated as first-order arithmetic by Ganchev/M. Soskova (2012).
Definition

$A \leq_e B$ if there is an enumeration operator Φ with $A = \Phi(B)$, i.e., there is a c.e. set Φ of pairs (x, F) (of numbers x and finite sets F) denoting that for all x, $x \in A$ iff there is $(x, F) \in \Phi$ with $F \subseteq B$.

In particular, we will focus on the degree structure S_e of the enumeration degrees of the Σ^0_2-sets, which coincides with the enumeration degrees $a \leq 0'_{e}$. They form a densely ordered countable upper semilattice with least element 0_{e} (the degree of the c.e. sets) and greatest element $0'_{e}$ (the degree of \overline{K}).

For S_e, the \exists-theory is decidable by Lagemann (1972), whereas the $\exists \forall \exists$-theory is undecidable by Kent (2006).

The full first-order theory is as complicated as first-order arithmetic by Ganchev/M. Soskova (2012).

However, the decidability of the $\forall \exists$-theory of S_e remains open.
Deciding the $\forall \exists$-theory of a degree structure D amounts to giving a uniform decision procedure to the following

Algebraic Problem (for deciding the $\forall \exists$-theory of D)

Given finite partial orders P and $Q_i \supseteq P$ (for $i \leq n$), does every embedding of P into D extend to an embedding of Q_i into D for some $i \leq n$ (where i may depend on the embedding of P)?
Deciding the $\forall \exists$-theory of a degree structure D amounts to giving a uniform decision procedure to the following

Algebraic Problem (for deciding the $\forall \exists$-theory of D)

Given finite partial orders P and $Q_i \supseteq P$ (for $i \leq n$), does every embedding of P into D extend to an embedding of Q_i into D for some $i \leq n$ (where i may depend on the embedding of P)?

Two major subproblems of the $\forall \exists$-theory of S_e are decidable:

Extension of Embeddings Problem

Given finite partial orders P and $Q \supseteq P$, does every embedding of P into S_e extend to an embedding of Q into S_e?

(Lempp/Slaman/Sorbi 2005: complicated decision procedure)
Deciding the $\forall\exists$-theory of a degree structure D amounts to giving a uniform decision procedure to the following

Algebraic Problem (for deciding the $\forall\exists$-theory of D)

Given finite partial orders P and $Q_i \supseteq P$ (for $i \leq n$), does every embedding of P into D extend to an embedding of Q_i into D for some $i \leq n$ (where i may depend on the embedding of P)?

Two major subproblems of the $\forall\exists$-theory of S_e are decidable:

Extension of Embeddings Problem

Given finite partial orders P and $Q \supseteq P$, does every embedding of P into S_e extend to an embedding of Q into S_e?

(Lempp/Slaman/Sorbi 2005: complicated decision procedure)

Lattice Embeddings Problem

Which finite lattices can be embedded into S_e (preserving join and meet)?

(Lempp/Sorbi 2002: all finite lattices embed)
The main technical obstacles to deciding the $\forall \exists$-theory of S_e showed up first in the following

Theorem (Ahmad 1989 (cf. Ahmad/Lachlan 1998))

1. There is an *Ahmad pair* of Σ^0_2-enumeration degrees (a, b), i.e., there are incomparable degrees a and b such that any degree $v < a$ is $\leq b$.
The main technical obstacles to deciding the $\forall\exists$-theory of S_e showed up first in the following

Theorem (Ahmad 1989 (cf. Ahmad/Lachlan 1998))

1. There is an *Ahmad pair* of Σ^0_2-enumeration degrees (a, b), i.e., there are incomparable degrees a and b such that any degree $v < a$ is $\leq b$.

2. There is no *symmetric Ahmad pair* of Σ^0_2-enumeration degrees, i.e., there are no incomparable degrees a and b such that any degree $v < a$ is $\leq b$, and any degree $w < b$ is $\leq a$.
The main technical obstacles to deciding the $\forall \exists$-theory of S_e showed up first in the following:

Theorem (Ahmad 1989 (cf. Ahmad/Lachlan 1998))

1. There is an **Ahmad pair** of Σ^0_2-enumeration degrees (a, b), i.e., there are incomparable degrees a and b such that any degree $v < a$ is $\leq b$.

2. There is no **symmetric Ahmad pair** of Σ^0_2-enumeration degrees, i.e., there are no incomparable degrees a and b such that any degree $v < a$ is $\leq b$, and any degree $w < b$ is $\leq a$.

These are examples of $\forall \exists$-statements blocking $P \subset Q_0$ but not both $P \subset Q_0$ and $P \subset Q_1$:
In 2007, Kent emailed me the following “next” two questions arising from Ahmad’s work:

Technical Questions

1. Is there an *Ahmad triple* of Σ^0_2-enumeration degrees, i.e., are there degrees a, b and c such that (a, b) and (b, c) form Ahmad pairs?
In 2007, Kent emailed me the following “next” two questions arising from Ahmad’s work:

Technical Questions

1. Is there an \textit{Ahmad triple} of \(\Sigma^0_2 \)-enumeration degrees, i.e., are there degrees \(a, b \) and \(c \) such that \((a, b) \) and \((b, c) \) form Ahmad pairs?

2. Is there a \textit{cupping Ahmad pair}, i.e., is there an Ahmad pair \((a, b) \) with \(a \cup b = 0' \)?
In 2007, Kent emailed me the following “next” two questions arising from Ahmad’s work:

Technical Questions

1. Is there an *Ahmad triple* of Σ^0_2-enumeration degrees, i.e., are there degrees a, b and c such that (a, b) and (b, c) form Ahmad pairs?

2. Is there a *cupping Ahmad pair*, i.e., is there an Ahmad pair (a, b) with $a \cup b = 0_e'$?

So, e.g., 1 is an example of simultaneously blocking $\mathcal{P} \subset Q_0, Q_1, Q_2, Q_3$:

\[a \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad c \]

\[\mathcal{P} \quad Q_0 \quad Q_1 \quad Q_2 \quad Q_3 \]
In 2007, Kent emailed me the following “next” two questions arising from Ahmad’s work:

Technical Questions

1. Is there an *Ahmad triple* of Σ^0_2-enumeration degrees, i.e., are there degrees a, b and c such that (a, b) and (b, c) form Ahmad pairs?

2. Is there a *cupping Ahmad pair*, i.e., is there an Ahmad pair (a, b) with $a \cup b = 0'$?

So, e.g., 1 is an example of simultaneously blocking $P \subset Q_0, Q_1, Q_2, Q_3$:

For many years, I believed the answers to both to be “yes”.

Steffen Lempp | AE-theory of the Sigma2-enumeration degrees
However, the answer to both questions is “no”:

Theorem (Goh, Lempp, Ng, M. Soskova, to appear)

1. There is no Ahmad triple of Σ^0_2-enumeration degrees.
However, the answer to both questions is “no”:

Theorem (Goh, Lempp, Ng, M. Soskova, to appear)

1. There is no Ahmad triple of Σ^0_2-enumeration degrees.
2. But there is a *weak Ahmad triple*, i.e., there are pairwise incomparable Σ^0_2-enumeration degrees a, b, and c such that (a, b) and (a, c) do not form Ahmad pairs but any degree $v < a$ is $\leq b$ or $\leq c$.

This has led to some exciting on-going work that I will present in more detail in the remainder of the talk.
However, the answer to both questions is “no”:

Theorem (Goh, Lempp, Ng, M. Soskova, to appear)

1. There is no Ahmad triple of Σ^0_2-enumeration degrees.
2. But there is a *weak Ahmad triple*, i.e., there are pairwise incomparable Σ^0_2-enumeration degrees a, b, and c such that (a, b) and (a, c) do not form Ahmad pairs but any degree $v < a$ is $\leq b$ or $\leq c$.

This has led to some exciting on-going work that I will present in more detail in the remainder of the talk.

As for the other question:
However, the answer to both questions is “no”:

Theorem (Goh, Lempp, Ng, M. Soskova, to appear)

1. There is no Ahmad triple of Σ^0_2-enumeration degrees.
2. But there is a *weak Ahmad triple*, i.e., there are pairwise incomparable Σ^0_2-enumeration degrees a, b and c such that (a,b) and (a,c) do not form Ahmad pairs but any degree $v < a$ is $\leq b$ or $\leq c$.

This has led to some exciting on-going work that I will present in more detail in the remainder of the talk.

As for the other question:

Theorem (Kalimullin, Lempp, Ng, Yamaleev, submitted)

There is no cupping Ahmad pair.

The proof turns out to be a non-uniform finite-injury(!) argument.
Given the difficulty of the overall problem of deciding the $\forall\exists$-theory, we are currently concentrating on the following subproblem:

1-Point Extensions of Antichains

Decide, given a finite antichain $P = \{a_0, \ldots, a_n\}$ and 1-point extensions $Q_S = \{a_0, \ldots, a_n, x_S\}$ and $Q_T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$),
Given the difficulty of the overall problem of deciding the $\forall\exists$-theory, we are currently concentrating on the following subproblem:

1-Point Extensions of Antichains

Decide, given a finite antichain $P = \{a_0, \ldots, a_n\}$ and 1-point extensions $Q_S = \{a_0, \ldots, a_n, x_S\}$ and $Q^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of P can be extended to an embedding of Q_S for some such S or to an embedding of Q^T for some such T?
Given the difficulty of the overall problem of deciding the $\forall \exists$-theory, we are currently concentrating on the following subproblem:

1-Point Extensions of Antichains

Decide, given a finite antichain $P = \{a_0, \ldots, a_n\}$ and 1-point extensions $Q_S = \{a_0, \ldots, a_n, x_S\}$ and $Q^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of P can be extended to an embedding of Q_S for some such S or to an embedding of Q^T for some such T?

(Note that it is always possible to extend an embedding of a finite antichain P to an embedding of a larger antichain.)
Given the difficulty of the overall problem of deciding the $\forall\exists$-theory, we are currently concentrating on the following subproblem:

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $Q_S = \{a_0, \ldots, a_n, x_S\}$ and $Q^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of \mathcal{P} can be extended to an embedding of Q_S for some such S or to an embedding of Q^T for some such T?

(Note that it is always possible to extend an embedding of a finite antichain \mathcal{P} to an embedding of a larger antichain.)

The subproblem involving only extensions Q^T is trivial: Extendible iff there is a singleton T.
Given the difficulty of the overall problem of deciding the $\forall \exists$-theory, we are currently concentrating on the following subproblem:

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $\mathcal{Q}_S = \{a_0, \ldots, a_n, x_S\}$ and $\mathcal{Q}_T = \{a_0, \ldots, a_n, x_T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x_T > a_i$ iff $i \in T$), whether any embedding of \mathcal{P} can be extended to an embedding of \mathcal{Q}_S for some such S or to an embedding of \mathcal{Q}_T for some such T?

(Note that it is always possible to extend an embedding of a finite antichain \mathcal{P} to an embedding of a larger antichain.)

The subproblem involving only extensions \mathcal{Q}_T is trivial: Extendible iff there is a singleton T. We have now found a (complicated) complete characterization for the above subproblem involving only extensions \mathcal{Q}_S.
Given the difficulty of the overall problem of deciding the $\forall \exists$-theory, we are currently concentrating on the following subproblem:

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $Q_S = \{a_0, \ldots, a_n, x_S\}$ and $Q^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of \mathcal{P} can be extended to an embedding of Q_S for some such S or to an embedding of Q^T for some such T?

(Note that it is always possible to extend an embedding of a finite antichain \mathcal{P} to an embedding of a larger antichain.)

The subproblem involving only extensions Q^T is trivial: Extendible iff there is a singleton T.

We have now found a (complicated) complete characterization for the above subproblem involving only extensions Q_S.

We have no working conjecture that combines the Q_S and the Q^T.

Steen Lempp

AE-theory of the Sigma2-enumeration degrees
Main Theorem (Goh, Lempp, Ng, M. Soskova, in preparation)

Fix $n > 0$ and $S \subseteq \mathcal{P}(\{0, \ldots, n\}) - \{\emptyset\}$.

Let $S_0 = \{i \leq n \mid \{i\} \in S\}$, and let $S_1 = \{0, \ldots, n\} - S_0$.

<table>
<thead>
<tr>
<th>$S_0 = \emptyset$</th>
<th>Make the degrees a_i pairwise minimal pairs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>${0, \ldots, n} \neq S$</td>
<td>Fix $j \in {0, \ldots, n} - S$ and make each a_k (for $k \neq j$) form an Ahmad pair with a_j.</td>
</tr>
</tbody>
</table>
Main Theorem (Goh, Lempp, Ng, M. Soskova, in preparation)

Fix \(n > 0 \) and \(S \subseteq \mathcal{P}([0, \ldots, n]) - \{\emptyset\} \).

Let \(S_0 = \{i \leq n \mid \{i\} \in S\} \), and let \(S_1 = \{0, \ldots, n\} - S_0 \).

Then some embedding of \(\mathcal{P} \) into \(S_e \) cannot be extended to an embedding of \(Q_S \) for any \(S \in S \) ("\(S \) can be blocked") iff (*) holds:

- \(S_0 = \emptyset \), or
- \(\{0, \ldots, n\} \neq \bigcup S \); or
Main Theorem (Goh, Lempp, Ng, M. Soskova, in preparation)

Fix \(n > 0 \) and \(S \subseteq \mathcal{P}(\{0, \ldots, n\}) - \{\emptyset\} \).
Let \(S_0 = \{ i \leq n \mid \{i\} \in S \} \), and let \(S_1 = \{0, \ldots, n\} - S_0 \).
Then some embedding of \(\mathcal{P} \) into \(S_e \) cannot be extended to an
embedding of \(Q_S \) for any \(S \in S \) (“\(S \) can be blocked”) iff (*) holds:

- \(S_0 = \emptyset \), or
- \(\{0, \ldots, n\} \neq \bigcup S \); or
- \(S_0, S_1 \neq \emptyset \) and there is an assignment \(\nu : S_0 \to \mathcal{P}(S_1) - \{\emptyset\} \),
 i.e., a function such that
 - for each \(i \in S_0 \), \(\{i\} \cup \nu(i) \notin S \), and
 - for each \(F \subseteq S_0 \) with \(|F| > 1 \), we have \(\bigcap\{\nu(i) \mid i \in F\} \notin S \).
Main Theorem (Goh, Lempp, Ng, M. Soskova, in preparation)

Fix \(n > 0 \) and \(S \subseteq \mathcal{P}(\{0, \ldots, n\}) - \{\emptyset\} \).
Let \(S_0 = \{ i \leq n \mid \{ i \} \in S \} \), and let \(S_1 = \{0, \ldots, n\} - S_0 \).
Then some embedding of \(\mathcal{P} \) into \(S_e \) cannot be extended to an embedding of \(Q_S \) for any \(S \in S \) ("\(S \) can be blocked") iff (\(\ast \)) holds:

- \(S_0 = \emptyset \), or
- \(\{0, \ldots, n\} \neq \bigcup S \); or
- \(S_0, S_1 \neq \emptyset \) and there is an assignment \(\nu : S_0 \rightarrow \mathcal{P}(S_1) - \{\emptyset\} \), i.e., a function such that
 - for each \(i \in S_0 \), \(\{ i \} \cup \nu(i) \notin S \), and
 - for each \(F \subseteq S_0 \) with \(|F| > 1 \), we have \(\bigcap \{ \nu(i) \mid i \in F \} \notin S \).

Let me first give examples for each of the three clauses of (\(\ast \)):
- \(S_0 = \emptyset \): Make the degrees \(a_i \) pairwise minimal pairs.
Main Theorem (Goh, Lempp, Ng, M. Soskova, in preparation)

Fix $n > 0$ and $S \subseteq \mathcal{P}(\{0, \ldots, n\}) - \{\emptyset\}$.
Let $S_0 = \{i \leq n \mid \{i\} \in S\}$, and let $S_1 = \{0, \ldots, n\} - S_0$.
Then some embedding of \mathcal{P} into S_e cannot be extended to an embedding of Q_S for any $S \in S$ ("S can be blocked") iff (*) holds:

1. $S_0 = \emptyset$, or
2. $\{0, \ldots, n\} \neq \bigcup S$; or
3. $S_0, S_1 \neq \emptyset$ and there is an assignment $\nu : S_0 \to \mathcal{P}(S_1) - \{\emptyset\}$, i.e., a function such that
 - for each $i \in S_0$, $\{i\} \cup \nu(i) \notin S$, and
 - for each $F \subseteq S_0$ with $|F| > 1$, we have $\bigcap \{\nu(i) \mid i \in F\} \notin S$.

Let me first give examples for each of the three clauses of (*):

1. $S_0 = \emptyset$: Make the degrees a_i pairwise minimal pairs.
2. $\{0, \ldots, n\} \neq \bigcup S$: Fix $j \in \{0, \ldots, n\} - \bigcup S$ and make each a_k (for $k \neq j$) form an Ahmad pair with a_j.

The most difficult condition of (*) concerns the assignment
\(\nu : S_0 \to \mathcal{P}(S_1) - \{\emptyset\} \) satisfying

- for each \(i \in S_0 \), \(\{i\} \cup \nu(i) \notin S \), and
- for each \(F \subseteq S_0 \) with \(|F| > 1 \), we have \(\bigcap\{\nu(i) \mid i \in F\} \notin S \):
The most difficult condition of \((\ast)\) concerns the assignment \(\nu : S_0 \to \mathcal{P}(S_1) - \{\emptyset\}\) satisfying

- for each \(i \in S_0\), \(\{i\} \cup \nu(i) \notin S\), and
- for each \(F \subseteq S_0\) with \(|F| > 1\), we have \(\bigcap\{\nu(i) \mid i \in F\} \notin S\):

Easy example showing the first bullet is needed:

\(a_0\) forms an Ahmad pair with \(a_1\);
so \(S_0 = \{0\}\) and \(\nu : 0 \mapsto \{1\}\), namely, \(S = \{\{0\}\}\) can be blocked, but \(\{\{0\}, \{0, 1\}\}\) cannot.
The most difficult condition of (*) concerns the assignment \(\nu : S_0 \rightarrow \mathcal{P}(S_1) - \{\emptyset\} \) satisfying

- for each \(i \in S_0 \), \(\{i\} \cup \nu(i) \notin S \), and
- for each \(F \subseteq S_0 \) with \(|F| > 1 \), we have \(\bigcap \{\nu(i) \mid i \in F\} \notin S \):

Easy example showing the first bullet is needed:

- \(a_0 \) forms an Ahmad pair with \(a_1 \);
- so \(S_0 = \{0\} \) and \(\nu : 0 \mapsto \{1\} \), namely, \(S = \{\{0\}\} \) can be blocked, but \(\{\{0\}, \{0, 1\}\} \) cannot.

Harder example showing the second bullet is needed:

- \(a_0 \) and \(a_1 \) both form an Ahmad pair with \(a_2 \), and \(a_0 \) and \(a_1 \) form a minimal pair; so \(S_0 = \{0, 1\} \) and \(\nu : 0, 1 \mapsto \{2\} \), namely, \(S = \{\{0\}, \{1\}, \{0, 1, 2\}\} \) and even \(S = \{\{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}\} \) can be blocked.
The most difficult condition of (*) concerns the assignment \(\nu : S_0 \rightarrow \mathcal{P}(S_1) - \{\emptyset\} \) satisfying

- for each \(i \in S_0 \), \(\{i\} \cup \nu(i) \notin S \), and
- for each \(F \subseteq S_0 \) with \(|F| > 1 \), we have \(\bigcap \{\nu(i) \mid i \in F\} \notin S \):

Easy example showing the first bullet is needed:

\(a_0 \) forms an Ahmad pair with \(a_1 \);
so \(S_0 = \{0\} \) and \(\nu : 0 \mapsto \{1\} \), namely, \(S = \{\{0\}\} \) can be blocked, but \(\{\{0\}, \{0, 1\}\} \) cannot.

Harder example showing the second bullet is needed:

\(a_0 \) and \(a_1 \) both form an Ahmad pair with \(a_2 \), and \(a_0 \) and \(a_1 \) form a minimal pair; so \(S_0 = \{0, 1\} \) and \(\nu : 0, 1 \mapsto \{2\} \), namely, \(S = \{\{0\}, \{1\}, \{0, 1, 2\}\} \) and even
\(S = \{\{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}\} \) can be blocked.
But: Note that the first bullet fails for \(S = \{\{0\}, \{1\}, \{0, 2\}\} \), so this cannot be blocked.
Proof Sketch: “S can be blocked” implies (*)&: Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$.
Proof Sketch: “S can be blocked” implies (\ast):
Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose a, b_i and $c_{i,j}$ (for $i < m$ and $j < n_i$) are degrees with $a \nleq b_i$ and $b_i \nleq c_{i,j}$ for all i and j.
Proof Sketch: “S can be blocked” implies (⋆):
Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose a, b_i and $c_{i,j}$ (for $i < m$ and $j < n_i$) are degrees with $a \nleq b_i$ and $b_i \nleq c_{i,j}$ for all i and j.

Then there is either $v < a$ with $v \nleq b_i$ for all i; or for some i, there is $w < b_i$ with $w \nleq c_{i,j}$.

The proof is a substantial extension of our “no Ahmad triple” result.
Proof Sketch: “S can be blocked” implies (⋆):
Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose a, b_i and $c_{i,j}$ (for $i < m$ and $j < n_i$) are degrees with $a \not\leq b_i$ and $b_i \not\leq c_{i,j}$ for all i and j.
Then there is either $v < a$ with $v \not\leq b_i$ for all i; or for some i, there is $w < b_i$ with $w \not\leq c_{i,j}$.

The proof is a substantial extension of our “no Ahmad triple” result.

Now suppose P embeds via degrees a_i. For each $i \in S_0$, fix nonzero $v_i < a_i$ with $v_i \not\leq a_k$ for all $k \in S_0 - \{i\}$, and set $\nu(i) = \{j \in S_1 \mid v_i \leq a_j\}$, so $\{i\} \cup \nu(i) \not\in S$ (and $\nu(i) \neq \emptyset$).
Proof Sketch: “\(S \) can be blocked” implies (*):
Suppose \(S_0 \neq \emptyset \) and \(\{0, \ldots, n\} = \bigcup S \). We will use the following

Theorem

Suppose \(a, b_i \) and \(c_{i,j} \) (for \(i < m \) and \(j < n_i \)) are degrees with \(a \not\leq b_i \) and \(b_i \not\leq c_{i,j} \) for all \(i \) and \(j \).
Then there is either \(v < a \) with \(v \not\leq b_i \) for all \(i \); or for some \(i \), there is \(w < b_i \) with \(w \not\leq c_{i,j} \).

The proof is a substantial extension of our “no Ahmad triple” result.

Now suppose \(\mathcal{P} \) embeds via degrees \(a_i \). For each \(i \in S_0 \), fix nonzero \(v_i < a_i \) with \(v_i \not\leq a_k \) for all \(k \in S_0 - \{i\} \), and set \(\nu(i) = \{j \in S_1 \mid v_i \leq a_j\} \), so \(\{i\} \cup \nu(i) \not\in S \) (and \(\nu(i) \neq \emptyset \)).
On the other hand, for \(F \subseteq S_0 \) with \(|F| > 1 \), set \(v_F = \bigcup_{i \in F} v_i \), and so \(v_F < a_j \) iff \(j \in \bigcap\{\nu(i) \mid i \in F\} \) (and \(\bigcap\{\nu(i) \mid i \in F\} \not\in S \)).
Proof Sketch: “S can be blocked” implies (\ast):
Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose a, b_i and $c_{i,j}$ (for $i < m$ and $j < n_i$) are degrees with $a \nless b_i$ and $b_i \nless c_{i,j}$ for all i and j.
Then there is either $v < a$ with $v \nless b_i$ for all i; or for some i, there is $w < b_i$ with $w \nless c_{i,j}$.

The proof is a substantial extension of our “no Ahmad triple” result.

Now suppose P embeds via degrees a_i. For each $i \in S_0$, fix nonzero $v_i < a_i$ with $v_i \nless a_k$ for all $k \in S_0 - \{i\}$, and set $\nu(i) = \{j \in S_1 \mid v_i \leq a_j\}$, so $\{i\} \cup \nu(i) \notin S$ (and $\nu(i) \neq \emptyset$).
On the other hand, for $F \subseteq S_0$ with $|F| > 1$, set $v_F = \bigcup_{i \in F} v_i$, and so $v_F < a_j$ iff $j \in \bigcap\{\nu(i) \mid i \in F\}$ (and $\bigcap\{\nu(i) \mid i \in F\} \notin S$).
So ν is an assignment as desired.
(*) implies “S can be blocked”: $0''$-argument with requirements:
(*) implies “\mathcal{S} can be blocked”: 0‴-argument with requirements:

$$A_i : X = \Phi(A_i) \rightarrow \forall j \in \nu(i) (X = \Gamma_j(A_j)) \text{ or } \exists \Delta (A_i = \Delta(X)) \ (i \in S_0)$$
(*) implies “S can be blocked”: 0'''-argument with requirements:

\(A_i : X = \Phi(A_i) \rightarrow \forall j \in \nu(i) (X = \Gamma_j(A_j)) \) or \(\exists \Delta (A_i = \Delta(X)) \) \((i \in S_0) \)

\(J_{i,j} : A_i \neq \Psi(A_j) \) \((\text{if } j \in \nu(i)) \)
(*) implies “S can be blocked”: $0'''$-argument with requirements:

$A_i : X = \Phi(A_i) \rightarrow \forall j \in \nu(i) (X = \Gamma_j(A_j))$ or $\exists \Delta (A_i = \Delta(X))$ ($i \in S_0$)

$J_{i,j} : A_i \neq \Psi(A_j)$ (if $j \in \nu(i)$)

$\mathcal{E}_F : \forall k \in F (Y = \Phi(A_k)) \rightarrow Y = \Lambda(A_i)$

(if $F \in S$ and there is a unique $i \in S_0$ with $F \subseteq \nu(i)$)

$\mathcal{E}_{F,j} : \forall k \in F (Y = \Phi(A_k)) \rightarrow Y = \Lambda(A_j)$

(if $F \in S$ and $F \subseteq \nu(i)$ for at least two $i \in S_0$, and $j \in \bigcap \{\nu(i) \mid F \subseteq \nu(i)\} - F$)
(*) implies “S can be blocked”: $0'''$-argument with requirements:

$A_i : X = \Phi(A_i) \rightarrow \forall j \in \nu(i) (X = \Gamma_j(A_j))$ or $\exists \Delta (A_i = \Delta(X))$ ($i \in S_0$)

$J_{i,j} : A_i \neq \Psi(A_j)$ (if $j \in \nu(i)$)

$E_F : \forall k \in F (Y = \Phi(A_k)) \rightarrow Y = \Lambda(A_i)$

(if $F \in S$ and there is a unique $i \in S_0$ with $F \subseteq \nu(i)$)

$E_{F,j} : \forall k \in F (Y = \Phi(A_k)) \rightarrow Y = \Lambda(A_j)$

(if $F \in S$ and $F \subseteq \nu(i)$ for at least two $i \in S_0$, and $j \in \bigcap \{\nu(i) \mid F \subseteq \nu(i)\} - F$)

$M_{i,j} : Y = \Phi(A_i) = \Phi(A_j) \rightarrow Y$ is c.e. (if $i \in S_0$; $j \in S - (\{i\} \cup \nu(i)))$

$M_F : \forall j \in F (Y = \Phi(A_j)) \rightarrow Y$ is c.e.

(if $|F| > 1$, $F \subseteq S_1$, and $F \not\subseteq \nu(i)$ for all $i \in S_0$)
(*) implies “S can be blocked”: 0”’-argument with requirements:

$A_i : X = \Phi(A_i) \rightarrow \forall j \in \nu(i) (X = \Gamma_j(A_j))$ or $\exists \Delta (A_i = \Delta(X)) \ (i \in S_0)$

$J_{i,j} : A_i \neq \Psi(A_j) \ \text{ (if } j \in \nu(i))$

$\mathcal{E}_F : \forall k \in F (Y = \Phi(A_k)) \rightarrow Y = \Lambda(A_i)$

$(\text{if } F \in S \text{ and there is a unique } i \in S_0 \text{ with } F \subseteq \nu(i))$

$\mathcal{E}_{F,j} : \forall k \in F (Y = \Phi(A_k)) \rightarrow Y = \Lambda(A_j)$

$(\text{if } F \in S \text{ and } F \subseteq \nu(i) \text{ for at least two } i \in S_0,$
and $j \in \bigcap \{\nu(i) \mid F \subseteq \nu(i)\} - F)$

$M_{i,j} : Y = \Phi(A_i) = \Phi(A_j) \rightarrow Y \text{ is c.e. (if } i \in S_0; j \in S - (\{i\} \cup \nu(i)))$

$M_F : \forall j \in F (Y = \Phi(A_j)) \rightarrow Y \text{ is c.e.}$

$(\text{if } |F| > 1, F \subseteq S_1, \text{ and } F \not\subseteq \nu(i) \text{ for all } i \in S_0)$

$I_{j,k} : A_j \neq \Psi(A_k) \ \text{ (if } j,k \in S_1 \text{ and there is } i \in S_0 \text{ with } j,k \in \nu(i))$

$I_j : A_j \neq W \ \text{ (if } j \in S_1 - \bigcup_{i \in S_0} \nu(i))$
Thanks!