Low levels of the arithmetical hierarchy and computable reductions on ω

Uri Andrews

University of Wisconsin

Nov 2022
Surveying results of many people.
Ceers (Σ^0_1 equivalence relations)

A lot of work has been focused on the structure of ceers, including:

- There is a universal degree, which appears naturally: Provable equivalence in PA, isomorphism of finite presentations of groups, word problems of some groups, equivalence relations where the classes are uniformly effectively inseparable.

- Ceers with finitely many classes form an initial segment \mathcal{I}.

- There are ceers which are not above $=^{\omega}$ (usually called Id). We call these dark. This is a failure of the analog of Silver’s theorem.

- There are infinitely many ceers which are minimal over \mathcal{I}.

- We have some descriptions of when pairs of ceers have (or don’t have) a join or a meet.

- Every degree has a strong minimal cover (some only 1, some countably many)
More ceers facts

- $\omega < \omega$ embeds as an initial segment of the degrees (sending the empty string to Id).
- The degree structure of Ceers interprets $(\mathbb{N}, +, \cdot)$ and so the theory is as complicated as possible. Also, the degree structure of the Light ceers, also the degree structure of the Dark ceers. Also, each of these $/\mathcal{I}$.
- The collection of 1-dimensional ceers R_X for $X \subseteq \omega$ embeds the 1-degrees of (infinite) c.e. sets.

Definition (The Halting Jump operator on ceers)

Given a ceer X, define X' by $i \ X' \ j$ if and only if $\phi_i(i) \downarrow X \phi_j(j) \downarrow$.

- $X' \geq X$ for all X.
- $X' > Y'$ iff $X > Y$.
- $X' \equiv X$ if and only if X is universal.
- $X' \leq A \oplus B$ implies $X' \leq A$ or $X' \leq B$.
There is a universal co-ceer π.

The only ceer which is below a co-ceer is Id, and the ones with finitely many classes.

Every co-ceer is light (i.e. above Id).
Everything about ceers relativizes (some care needed: Relativizations include $0'$-reductions).

- There is universal Σ^0_2-equivalence relation.
- There are dark ones.
- There are the 1-dimensional ones (closed downwards)

We haven’t really considered what the halting jump looks like here. e.g., What are there other fixed points besides the universal ceer degree and the universal Σ^0_2-degree?

For any Δ^0_2-degree d, the complete d-ceer is a fixed-point. Are there any others? Is the universal ceer least among the fixed points?

Very little independent investigation here.
Many natural examples of things that correspond to ERs on 2^ω restricted to CE: $=^{ce} \equiv \text{Id}^+ \in \Pi^0_2$, $E^{ce}_{set} \equiv \text{Id}^{++} \in \Pi^0_4$, $E^{ce}_3 \in \Pi^0_4$

Definition

For any E, let $i E^+ j$ if and only if $[W_i]_E = [W_j]_E$.

Theorem

There is NO universal Π^0_n-equivalence relation.

In fact, for every Π^0_n-equivalence relation X, there is some Δ^0_n-equivalence relation which is not below X.

This is a constant foot-gun. The temptation to say that $=^{ce}$ is Π^0_2-universal is overpowering at times. Resist.
Theorem

If X is a Π^0_2-equivalence relation, then there is some $Y \in \Delta^0_2$ so that $i X j$ iff $Y[i] = Y[j]$.

Now, the Ershov-Hierarchy essentially answers why there can’t be a universal one. Consider the sequence:

$=^{ce}$ formed by letting Y be a universal c.e. set.

Next $=^{d-ce}$ formed by letting Y be a universal d-c.e. set.

\vdots

$=^{\alpha-ce}$ formed by letting Y be a universal α-c.e. set.

\vdots

By looking at where Y sits in the Ershov hierarchy, it’s clear that these are co-final among Δ^0_2-equivalence relations.
Aside on $\equiv\Sigma_n$ and \dagger

Relativizing at higher levels, that same hierarchy looks like:

$\equiv\Sigma^0_3 \leq d-\Sigma^0_3 \leq \ldots$.

Theorem

$\text{Id}^{\dagger n} \equiv \Sigma^0_{2n-1}$.

Corollary

Every Σ^0_{2n-1} or Π^0_{2n-1} equivalence relation reduces to $\text{Id}^{\dagger n}$.

Proof.

If X is Σ^0_{2n-1}, we provide a reduction of X to $\equiv\Sigma^0_{2n-1}$. Send n to $[n]_X$.

If X is Π^0_{2n-1}, send n to $\omega \setminus [n]_X$.

Question

Is $\pi^{\dagger} \equiv \Sigma^0_2$?
Aside on \equiv^{Σ_n} and $\vdash 2$

\vdash doesn’t preserve these difference hierarchies:

Question

For any Π^0_n-equivalence relation X, $X^{\vdash} \leq \equiv^{\Sigma_{n+1}}$.

Proof.

Send i to $[W_i]_X$.

Question

We can ask about what the high Π^0_n-equivalence relations are. This has been looked at for the ceers with some surprising answers, but not even at Π^1_0.

Is $=^{ce}$ the least Π^0_2-equivalence relation X so that $X^{\vdash} \equiv \equiv^{\Sigma_3}$?

Do they all have that jump?
So why is there a Π^0_1-universal?

Theorem

For every Π^0_1 relation (not assumed transitive) E, there is a Δ^0_1 set X and a partial computable function f so that if E is an equivalence relation, then $i E j$ iff $X[f(i)] = X[f(j)]$.

Proof.

At every s, we determine $X(\langle n, m \rangle)$ for $n, m \leq s$. Let $t_0 = 0$ and let t_{n+1} be the first stage $> t_n$ where E looks transitive on $[0, n + 1]$. If E is transitive, then this is an infinite sequence of stages, and $f : n \mapsto t_n$ will be our reduction. When s is not a t_n-stage for some n, we do nothing much in coding X – make no differences. Put 0 on all new inputs.

Otherwise, code the highest-priority split – use transitivity to make all the coding columns look okay.

We could do this for Π^0_2-relations, but the reduction function f would also be Δ^0_2, so we wouldn’t get computable reduction.
Here lie some natural ERs on c.e. sets:

\[E_{0}^{ce} \equiv E_{1}^{ce} \equiv E_{2}^{ce} \equiv \text{the } \Sigma_{3}^{0}-\text{universal degree} \]

Definition

\[
\begin{align*}
i E_{0}^{ce} j & \text{ iff } W_{i} =* W_{j} \\
i E_{1}^{ce} j & \text{ iff for all but finitely many } n, \ W_{i}[n] = W_{j}[n] \\
i E_{2}^{ce} j & \text{ iff } \Sigma_{n \in A \Delta B} \frac{1}{n} < \infty
\end{align*}
\]

The pattern seems to be that almost any “natural” \(\Sigma_{n}^{0} \)-equivalence relation will collapse to being universal. Obviously, this doesn’t happen at \(\Pi \)-levels.

Some classes within \(\Sigma_{3}^{0} \)-ERs, including the following two attempts to “effectivize” the class of countable borel equivalence relations (cbers).
Definition (Coskey, Hamkins, R. Miller (2012))

- The action of a computable group G acting on \mathbf{CE} is computable in indices if there is computable α so that

$$W_{\alpha(g,e)} = g \cdot W_e.$$

The induced orbit equivalence relation is denoted $E^c e_G$.

- $E^c e$ is enumerable in indices if there is computable α so that, for all $i \in \omega$,

$$e E^c e i \iff (\exists n)(W_{\alpha(e,n)} = W_i).$$

The first here was a natural attempt to use the Feldman-Moore theorem to bring the idea of cbers to ERs on \mathbf{CE}. The second attempt is similar, but using the Luzin-Novikov theorem.
Theorem

If G is a computable group acting on CE computably in indices, then either $E_G^{ce} \equiv E_0^{ce}$ or $E_G^{ce} \equiv^{ce}$

First, we showed that any group acting on CE computably in indices is actually acting via a permutation on ω. Still, there are several computable subgroups of S_∞ to consider. The prototypical examples to consider come down to the following cases:

- Let G be all finite permutations of ω.
- Let \mathbb{Z} act on ω by shifting.
- Let G be generated by $(0, 1)(2, 3, 4)(5, 6, 7, 8) \cdots$.

Having shown these were all Σ_3^0-complete, we realized that we had enough tricks to prove the same for any infinite $G \subseteq S_\infty$.
Theorem
There are infinite chains and antichains of ERs which are enumerable in indices between $=^{ce}$ and E_0^{ce}.

Simple construction for chains.
For $X \subset \omega$, let $F(X)$ be the least element in X^c.
Let $iR_n j$ if and only if $W_i = W_j$ or $0 \in W_i \cap W_j$ and $F(W_i) \equiv F(W_j) \mod n$.
Note that $=^{ce}$ reduces to R_n by sending W_i to $W_i + 1$. Among c.e. sets which contain 0, there are $n + 1$ classes depending $F(W_i) \mod n$ OR $F(W_i) = \infty$. The last one is Π_2^0-complete, while the others are Σ_2^0-complete. By counting the number of properly Σ_2^0-classes, you can show $R_{n+1} \nleq R_n$.

Our examples are all Δ^0_3. Can there be a properly Σ^0_3, but not universal, ER which is enumerable in indices?

Also, there is a Δ^0_2 enumerable in indices ER: E_{min}, and a Π^0_2 which is below $\equiv^{ce} E_{\text{max}}$.

Can there be a Σ^0_2 one which is not Δ^0_2. More generally, can there be any Σ^0_2 quotient of \equiv^{ce} which is not Δ^0_2?
Can the Lusin-Novikov direction be salvaged by demanding more uniformity from the enumerations?

Definition

E^{ce} is *uniformly* enumerable in indices if there is a computable α so that for all $i \in \omega$,

\[
e^{ce} i \iff (\exists n)(W_{\alpha(e,n)} = W_i).
\]

and whenever $W_e = W_i$, $W_{\alpha(e,n)} = W_{\alpha(i,n)}$.

Note that you expect this if the operation $W_i \mapsto W_{\alpha(i,n)}$ is really an operation on sets (i.e., is independent of the enumeration).

Observation

E^{ce} is uniformly enumerable in indices if and only if it is the orbit equivalence of a computable action of a monoid M on CE.
Thank you

for your attention, comments and contributions!