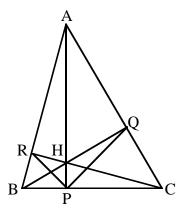
WISCONSIN MATHEMATICS SCIENCE & ENGINEERING TALENT SEARCH PROBLEM SET IV (2001-2002) JANUARY 2002

- 1. It is known that $(1 + \sqrt{2})^{99}$ is not an integer. Nevertheless, show that if we write this number in its decimal representation, then there are at least 25 consecutive 0's directly following the decimal point.
- **2.** Altitudes \overline{AP} , \overline{BQ} and \overline{CR} are drawn in $\triangle ABC$, and these lines meet at point H, as indicated. (Recall that the three altitudes of a triangle always go through a common point, which is called the orthocenter of the triangle.) Suppose that AH = BC. Show that \overline{PR} and \overline{PQ} are perpendicular.



- **3.** Find all positive integers c, if any, such that the equation $(m^2 + 1)(n^2 + 1) = (cmn + 1)^2 + 1$ has infinitely many positive integer solutions m, n.
- **4.** (New Year's Problem). Let a denote the average of the reciprocals of the numbers

$$\sqrt{10^6 + n + 1} + \sqrt{10^6 + n}$$

with n = 0, 1, 2, ..., 2000. Show that a can be written as a fraction u/v, where u and v are positive integers, and find the smallest possible value for u + v.

5. If x is an integer, then certainly $x^2 + x$ and $x^3 + 2x^2$ are integers. If x is rational, but not an integer, then it is easy to see that neither $x^2 + x$ nor $x^3 + 2x^2$ is an integer. Do there exist nonrational real numbers x so that both $x^2 + x$ and $x^3 + 2x^2$ are integers? If so, find all possibilities for x.

You are invited to submit a solution even if you get just one problem. Please do not write your solutions on the problem set page. Remember that solutions usually require a proof or justification.

RETURN TO:	MATHEMATICS TALENT SEARCH	DEADLINE	
	Dept. of Mathematics, 480 Lincoln Drive	February 11	
	University of Wisconsin, Madison, WI 53706	2002	
	(Please Detach)		

Town

PROBLEM	SCORE
1	
2	
3	
4	
5	

Home Address Town Zip Code

PROBLEM SET IV