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Introduction



The Greater Plan

This talk is the first in a series meant to work our way up to

understanding the basic ideas behind the realizability toposes of Pitts,

Hyland, and Johnstone. We will break up the material into three parts.

1. Category theory, particularly the notions of representability and

adjunction (The current slides.)

2. Fibrations and toposes

3. PCAs and realizability toposes
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The Lesser Plan

This will be a brisk introduction to categories, and will be light on logic.

We will try to cover

� Categories

� Functors & natural transformations

� Representability & the Yoneda Lemma

� Adjunctions

� Limits & colimits
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Why Categories?

Category theory has roots in work in algebraic topology by Samuel

Eilenberg and Saunders Mac Lane (see [Eilenberg and MacLane, 1945])

where the focus was on the auxiliary gear needed to describe natural

transformations.

Some patterns come up repeatedly in different settings. Categories as a

lingua franca.

� Free groups, discrete topological spaces, and vector spaces are all

share a common universal property relative to Set.

� The basic semantics for first order logic, Martin-Löf type theory, and

Boolean-valued models of set theory all live in different forms of the

same sort of structure.

Category theory offers tools for transporting reasoning to different

settings by offering a variety of setting-independent notions for reasoning

about disparate kinds of objects.
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Categories



Categories

A category C consists of the following data:

� A class C0 whose elements are called objects,

� For any X ,Y ∈ C0 a set C(X ,Y ) of morphisms X → Y ,

� For any X ,Y ,Z ∈ C0 a function

cXYZ : C(Y ,Z )× C(X ,Y )→ C(X ,Z ) called composition (usually

writing cXYZ (f , g) as f ◦ g).

� For each X ∈ C0 an element 1X ∈ C(X ,X ),

satisfying associativity of composition, and that 1X is a left and right

identity element under composition.

In practice we treat the C(X ,Y ) as disjoint; that is we may think of

morphisms as really being elements of
∑

X ,Y∈C0
C(X ,Y ).
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Categories

Examples of categories:

� Categories of common mathematical objects and their appropriate

notion of “mapping”

� Set: sets and functions

� FinSet: finite sets and functions

� Ring: rings and ring homomorphisms

� R −Mod: R-modules and module homomorphisms

� Top: topological spaces and continuous functions

� HTop: topological spaces and homotopy-equivalence classes of maps

� Pos: posets and order-preserving maps
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Categories

More abstract categories drawn from common structures

� A set X can be thought of as a category whose only morphisms are

identities

� A group G can be thought of as a category with one object with all

morphisms invertible

� A preorder can be thought of as a category C in which C(X ,Y ) has

at most one element for all X ,Y ∈ C0

� Cop: the opposite category of C.

� C op
0 = C0

� Cop(X ,Y ) = C(Y ,X )

� cC
op

XYZ = cCZYX ◦ τ with τ the twist map

C(Z ,Y )× C(Y ,X )→ C(Y ,X )× C(Z ,Y ).
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Categories

In any category we can define the notion of isomorphism, and it’s what

you would expect. A morphism f : X → Y is an isomorphism if there’s a

g : Y → X with fg = 1Y and gf = 1X .

The most basic generalizations of injective and surjective maps are

monomorphisms and epimorphisms.

� A morphism f is a monomorphism if fg = fh implies g = h for all

g , h.

� We say f is an epimorphism if gf = hf implies g = h for all g , h.

Monomorphism + epimorphism 6⇒ isomorphism (counterexample:

(N,+)). The converse does hold.
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Functors & Natural Transformations

Functors are the natural notion of a map between categories. A functor

F : C → D consists of

� A function F0 : C0 → D0

� For every X ,Y ∈ C0 a function FX ,Y : C(X ,Y )→ D(F0X ,F0Y )

such that identities and composition are preserved.

Note that this means all functors will preserve isomorphisms.

It is common practice to simply write FX or Ff : FX → FY rather than

write out all of the subscripts.
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Functors & Natural Transformations

Example functors:

� id : C → C taking every object and morphism to itself.

� π1 : pTop→ Grp the fundamental group functor (from pointed

topological spaces).

� (−)ab : Grp→ Grp, the abelianization functor.

� P(−) : Setop → Set, taking each set to its power set, and each

function f to f −1[−].

� Given a functor F : C → D, there is its opposite functor

F op : Cop → Dop defined by exactly the same data as F .

9



Functors & Natural Transformations

Functors worth singling out:

� C(X ,−) : C → Set.

� On objects, Y 7→ C(X ,Y ).

� On morphisms, f : Y1 → Y2 in C goes to the function C(X , f ) with

g ∈ C(X ,Y1) 7→ fg ∈ C(X ,Y2).

� C(−,X ) : Cop → Set.

� On objects, Y 7→ C(Y ,X ).

� On morphisms, f : Y1 → Y2 goes to the function C(f ,X ) given by

g ∈ C(Y2,X ) 7→ gf ∈ C(Y1,X ).

These play a special role we’ll see later.
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Functors & Natural Transformations

Let F ,G be functors C → D. A natural transformation α : F → G is

an assignment

X ∈ C0 7→ αX ∈ D(FX ,GX )

such that for any X ,Y ∈ C and f : X → Y , the square

FX GX

FY GY

αX

Ff Gf

αY

commutes.

We call the morphism αX the component of α at X .
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Functors & Natural Transformations

Examples of natural transformations:

� For any F : C → D, X 7→ 1FX is a natural transformation F → F .

� c : idGrp → (−)ab, whose components are the canonical projections

G → G ab.

� A group action of G may be viewed as a functor G → Set. If

A,B : G → Set are two group actions, then a natural

transformation α : A→ B is exactly a G -equivariant function.

� Let P(−) : Set→ Set be the covariant power set functor. Then the

singleton functions ιX : X → P(X ) constitute a natural

transformation 1Set → P(−).

� The maps sending an element g of a group G to the unique

φ : Z→ G with φ(1) = g are the components of a natural

transformation U → Grp(Z,−), where U : Grp→ Set is the

forgetful functor.
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Functors & Natural Transformations

Given functors F : C → D and G : D → E , the data

� (G ◦ F )0 := G0 ◦ F0

� (G ◦ F )X ,Y := GX ,Y ◦ FX ,Y

constitute a functor. This operation is associative because function

composition is.

With the identity functors, small categories and their functors form a

category.
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Functors & Natural Transformations

FX GX HX

FY GY HY

αX

Ff

βX

Gf Hf

αY βY

Given functors F ,G ,H : C → D and natural transformations

F
α→ G

β→ H, the assignment X ∈ C 7→ βX ◦ αX is also a natural

transformation F → H. This is because pastings of commutative squares

are commutative.

So for categories C,D, there is a category whose objects are functors, and

whose morphisms are natural transformations. This is the functor

category DC .

An isomorphism in such a category is a natural isomorphism.
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Functor Categories & The Yoneda Lemma

Functor categories are ubiquitous.

� Set∆op

, the category of simplicial sets (important in abstract

homotopy theory)

� SetG , the category of group actions of a fixed group, with

equivariant maps as morphisms.

� VecGC for a fixed group G is the category of complex representations

of G .

� The category of groups, and a number of other “algebraic”

categories, can be viewed as the full subcategory of SetT of finite

limit preserving functors from a Lawvere theory T .

� Chain complexes and their morphisms constitute a subcategory of

R −ModZ, where we view Z as a partial order.
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Functor Categories & The Yoneda Lemma

Functors of the form C(−,X ) have a special place in category theory.

This is because of the Yoneda lemma, which states that there is a

natural isomorphism

SetC
op

(C(−,X ),F ) ' FX

for any F : Cop → Set. Here we consider these as functors

Cop × SetC
op

→ Set.

A consequence of this is the Yoneda embedding. Letting F = C(−,Y ),

we have

SetC
op

(C(−,X ), C(−,Y )) ' C(X ,Y )

giving an embedding functor C → SetC
op

.
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Proof (sketch) of the Yoneda Lemma

Certainly a natural transformation α : C(−,X )→ F picks out some

element of FX—namely, αX (1X ) ∈ FX .

Given a ∈ FX , let ξaY : C(Y ,X )→ FY be given by the action

f ∈ C(Y ,X ) 7→ Ff (a) ∈ FY .

In fact this is the only possible natural transformation sending 1X to a,

otherwise

1X C(X ,X ) C(Y ,X ) f

a FX FY ?

C(f ,X )

ξaX ξaY

Ff

doesn’t even commute.
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Proof (sketch) of the Yoneda Lemma

So for a given X and F ,

� AX ,F : SetC
op

(C(−,X ),F )→ FX given by α 7→ αX (1X )

� BX ,F : FX → SetC
op

(C(−,X ),F ) given by a 7→ ξa.

They are natural in both X and F . The proofs are not difficult. E.g. for

the naturality of A in the variable X , given f : Y → X

Ff ◦ AX ,F (α) = Ff (αX (1X ))

= αY (f )

= αY ◦ C(Y , f )(1Y )

= AY ,F (α ◦ C(−, f ))

= AY ,F ◦ SetC
op

(C(−, f ),F )(α)
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Proof (sketch) of the Yoneda Lemma

The above series of identities serves to establish that the below square

commutes.

SetC
op

(C(−,X ),F ) FX

SetC
op

(C(−,Y ),F ) FY

AX,F

SetC
op

(C(−,f ),F ) Ff

AY ,F
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Illustrating Yoneda

Some examples:

� Cayley’s theorem in group theory is a consequence. There’s an

isomorphism SetG (G (∗,−),G (∗,−)) ' G by Yoneda.

� The edges of a directed multigraph X correspond to morphisms from

• → •, and the vertices to morphisms from •. Directed multigraphs

are Set-valued functors on Γ = {E ⇒ V }; these special graphs are

Γ(E ,−) and Γ(V ,−).

� The simplicial sets ∆(n) := ∆(−, n) are generic n-simplices. Given a

simplicial set S , the elements of S(n) correspond to mappings from

∆(n).
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Representability

When a functor F ∈ SetC
op

(resp. SetC) is isomorphic to one of the form

C(−,X ) (resp. C(X ,−)), we say it is representable, and call X the

representing object of F .

� Let G be a group and H a normal subgroup. Let

F = GH : Grp→ Set be the functor taking I to the set of group

homomorphisms G → I that kill H. This is representable if there’s a

group Q with

Grp(Q,−) ' GH .

That is arbitrary homomorphisms Q → I correspond to H-killing

homomorphisms G → I . There always is such a representing object:

G/H.
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Representability

When a functor F ∈ SetC
op

(resp. SetC) is isomorphic to one of the form

C(−,X ) (resp. C(X ,−)), we say it is representable, and call X the

representing object of F .

� Let X be an arbitrary set and let F = Set(X , | − |) : Top→ Set be

the functor taking a space T to the set of arbitrary functions

X → |T | (where |T | is the underlying set of T ).

Representability means a topological space S such that continuous

functions S → T correspond to arbitrary functions X → |T |. Where

S is the discrete space on X (DX for the nonce), we do have

Top(DX ,−) ' Set(X , | − |).
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Representability

When a functor F ∈ SetC
op

(resp. SetC) is isomorphic to one of the form

C(−,X ) (resp. C(X ,−)), we say it is representable, and call X the

representing object of F .

� Fix a set A and let F = P(A×−) : Setop → Set take a set X to

the set {R | R ⊂ A× X}, and take morphisms f : Y → X to the

functions R 7→ (1A × f )−1[R] (inverse image long

(a, y) 7→ (a, f (y))). This is representable by

Set(−,P(A)) ' P(A×−)

� Let F = O : Topop → Set take a space X to its set of open sets,

and a continuous function to the inverse image operation on open

sets. This functor is representable by the Sierpinski space Σ

Top(−,Σ) ' O
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Representability

When a functor F ∈ SetC
op

(resp. SetC) is isomorphic to one of the form

C(−,X ) (resp. C(X ,−)), we say it is representable, and call X the

representing object of F .

� Let (Xi )i∈I be an indexed family of objects of C, and let

ConeXi : Cop → Set be the functor with ConeXi (Y ) the set of all

(fi : Y → Xi )i∈I , and morphisms acting by precomposition.

Then a representing object for ConeXi is exactly a product of the Xi .

This is the cartesian product in Set, direct sums in Grp, Ab, Veck ,

infima in partial orders, etc. Generally denoted
∏

i∈I Xi .

21



Representability

When a functor F ∈ SetC
op

(resp. SetC) is isomorphic to one of the form

C(−,X ) (resp. C(X ,−)), we say it is representable, and call X the

representing object of F .

� Let M,N be modules for a commutative ring R. Let

BilM,N : R −Mod→ Set take P to the set of bilinear maps

M × N → P, with action on module homomorphisms P → Q given

by composition.

This functor is represented by M ⊗ N with

R −Mod(M ⊗ N,−) ' BilM,N
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Representability

Recall the importance of 1X in determining the structure of natural

transformations from C(−,X ). An isomorphism C(−,X ) ' F determines

a universal/generic element of FX .

� Grp(G/H,−) ' GH above determines a universal H-killing

homomorphism in GH(G/H), the quotient projection.

� Top(DX ,−) ' Set(X , | − |) determines a universal function

X → |DX | (it’s boring, just the identity).

� Set(−,P(A)) ' P(A×−) determines a generic relation in

P(A× P(A)): the membership relation.

� Top(−,Σ) ' O determines a generic open set in O(Σ): {1}.
� R −Mod(M ⊗ N,−) ' BilM,N determines a generic bilinear map

M × N → M ⊗ N.
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Representability

Some facts about representability:

� Representing objects are unique up to isomorphism. This is a

consequence of the Yoneda embedding.

C(−,A) ' F ' C(−,B)

� A functor F : Cop → Set is representable if and only if there is an

X ∈ C and x ∈ F (X ) such that for every Y ∈ C and y ∈ F (Y ) there

is a unique f : Y → X with Ff (x) = y . (Universal element induced

by identity)

23



Adjoint Functors



Adjoint Functors

We dive right into the definition(s). Given functors

C D
F

G

we say that F is left adjoint to G , G is right adjoint to F , or F a G , if

and only if for every X ∈ C the functor C(F−,X ) is representable by GX .

Alternatively if C(FY ,X ) ' D(Y ,GX ), natural in X and Y (i.e.

isomorphic as functors Dop × C → Set).
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Adjoint Functors

Some examples:

� (−)ab : Grp � Ab : I , where I is the inclusion of Ab into Grp.

� F : Set � Grp : U, where U “forgets” the group structure and F

takes a set to the free group on that set.

� If P is a poset and P × P the product poset, then the function

p 7→ 〈p, p〉, considered as a functor, has a right adjoint if and only if

P has binary meets; it has a left adjoint iff it has binary joins.

� Any functor 1→ Set whose image is a singleton set has a right

adjoint.

� In Set the functor X ×− has right adjoint (−)X for all X .
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Adjoint Functors

The natural isomorphism

C(FY ,X ) ' D(Y ,GX )

gives us a special morphism ηY : Y → GFY for all Y ∈ D, corresponding

to the map 1FY ; and likewise for each X ∈ C a special map

εX : FGX → X corresponding to 1GX .

These are the components of natural transformations η : 1D → GF and

ε : FG → 1C , called the unit and counit of the adjunction, respectively.
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Adjoint Functors

Examples of units/counits in the adjunctions above:

� In the (−)ab a I adjunction, the unit is the projection from a group

onto its abelianization; the counit is the identity.

� In the Free group a Forgetful functor adjunction, the unit is the

inclusion of the free group’s generators (as a function in Set); the

counit is the obvious map from the free group on the elements of G ,

onto G .

� In the (X ×−) a (−)X adjunction the unit is the map

A→ (X × A)X given by a 7→ λx.(x , a); the counit X × AX → A is

given by the evaluation map.
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Adjoint Functors

We may in fact define an adjunction in terms of the unit and counit. We

have that F a G if and only if the diagrams of natural transformations

G GFG FGF F

G F

ηG

Gη

εF

Fη

commute.

(Here we’re using a notion of composing a natural transformation with a

functor that we haven’t explained. Don’t worry about it.)
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Limits & Colimits

Recall our functor ConeXi from above. Note the following:

� An indexed family of objects in C is an object of CI where I is a

discrete category.

� The operation taking X ∈ C to the constant family (X )i∈I ∈ CI is

(the object part of) a functor ∆ : C → CI .
� ConeXi (Y ) is the same thing as CI (∆Y ,Xi ).

There’s nothing special here about discrete I .
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Limits & Colimits

Given categories C,D, there is always a diagonal functor ∆ : C → CD

taking X ∈ C to the “constantly X” functor D → C.

� Given a functor F : C → D, a limit of F (if it exists) is a

representation of CD(∆−,F ).

� A colimit of F is a representation of CD(F ,∆−).
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Limits & Colimits

A limit P of a functor F , because of representability, is equipped with a

universal morphism εF : ∆P → F .

That is, for each X ∈ D, a morphism fX : P → FX such that for any

g : X → Y in D, Fg ◦ fX = fY .

� If D is discrete and P a product of F , εF ∈ CD(∆P,F ) comprises

the projections.
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Limits & Colimits

We say C has limits of shape D (resp. colimits of shape D) if

∆ : C → CD has a right (resp. left) adjoint.

A category is complete (resp. fintely complete) if ∆ : C → CD has a

right adjoint for every small (resp. finite) D.

A category is cocomplete (resp. fintely cocomplete) if ∆ : C → CD

has a left adjoint for every small (resp. finite) D.
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Special Limits & Colimits

Limits of the unique functor in C0 are terminal objects (denoted 1);

colimits are initial objects (denoted 0).

� X ∈ C terminal iff for all Y ∈ C there is a unique morphism Y → X .

� Singletons in Set

� The trivial group in Grp

� A top element of a poset

� X ∈ C initial iff for all Y ∈ C there is a unique morphism X → Y .

� The empty set in Set

� Also the trivial group in Grp

� Bottom elements of a poset

� N gets its inductive properties from being initial in a particular

category
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Special Limits & Colimits

Equalizers are limits of shape •⇒ •.

E X1 X2

Y

ε
f1

f2

g

Coequalizers are colimits for the same diagram.

X1 X2 C

Y

f1

f2

η

g
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Special Limits & Colimits

A limit of shape • → • ← • is called a pullback.

Y

P X1

X2 X3

a

b

ε1

ε2 f1

f2

Note: If f1 is a monomorphism (c.t. version of injective map), so is ε2.

Category theoretic version of inverse image.
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But. . . Why tho



this was supposed to be a logic seminar

We have talked about the way that representability and adjunctions

structure categories. What can we actually do with all this?

� We can state very general desiderata for a category to be a good

setting for doing logic (e.g. to make sense of the notion of a

structure for some language). For example, model theory works very

well in any Heyting pretopos.

� Constructions that we can describe as consequences of such

representability will port over to other settings (e.g. generalizations

of power sets in toposes of different sorts)
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Toposes: a preview

In fact, we can do a phenomenal amount of mathematics in a category E
satisfying two reasonable sounding conditions:

� E is finitely complete. That is

∆ : E → EC

has a right adjoint for all finite C.

� For all X ∈ E , the functor Sub(−× X ) : Eop → Set is representable

(where Sub(Y ) is the set of subobjects of Y , for a good notion of

subobject).

Such a category is called a topos; more in the sequel.
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Thanks!



Bibliography i

Borceux, F. (1994).

Handbook of categorical algebra. 1, volume 50 of

Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge.

Basic category theory.

Eilenberg, S. and MacLane, S. (1945).

General theory of natural equivalences.

Trans. Amer. Math. Soc., 58:231–294.

Lawvere, F. W. (1964).

An elementary theory of the category of sets.

Proceedings of the National Academy of Sciences, 52:1506–1511.

38



Bibliography ii

Mac Lane, S. (1998).

Categories for the working mathematician, volume 5 of

Graduate Texts in Mathematics.

Springer-Verlag, New York, second edition.

Riehl, E. (2017).

Category Theory in Context.

Aurora: Dover Modern Math Originals. Dover Publications.

39


	Introduction
	Categories
	Functors & Natural Transformations
	The Yoneda Lemma
	Adjoint Functors
	Limits & Colimits
	But…Why tho
	Thanks!

