Polynomials

1. \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0, \ a_n \neq 0 \)

 If \(a_n = 1 \), it is called monic.

 The set of polynomials (depending on coefficient ring) is denoted \(\mathbb{C}[x], \mathbb{R}[x], \mathbb{Z}[x], \mathbb{Q}[x], \mathbb{F}_p[x] \), etc.

 If \(P \in \mathbb{C}[x] \), then it has \(n \) complex roots (counting the multiplicity).

 If coefficients are real, then \(n \) complex roots must occur in conjugate pairs.

Example: There is a polynomial \(P \) of degree 7 with integer coefficients. It is known that it is equal to \(\pm 1 \) in 7 integer points. Prove that \(P \) cannot be factorized into the product of two polynomials with integer coefficients, with degree \(\geq 1 \).

2. \(P(x) = Q(x) \cdot R(x) \)

 At least one polynomial of degree \(\leq 3 \), let it \(Q \).

 \(Q = \pm 1 \) in 7 integer points, so at least four \(1 \) or at least four \(-1 \), which is impossible since \(Q = \pm 1 \) has degree \(\leq 3 \) and so cannot have 4 roots.

Viète’s Relations

\[
\begin{align*}
 x_1 + x_2 + \ldots + x_n &= -\frac{a_{n-1}}{a_n} \\
 x_1 x_2 + x_1 x_3 + \ldots + x_{n-1} x_n &= \frac{a_{n-2}}{a_n} \\
 x_1 x_2 \ldots x_n &= (-1)^n \frac{a_0}{a_n}
\end{align*}
\]

Example: \(x^4 + 3x^3 + 11x^2 + 9x + A \) has roots \(a, b, c, d \) such that \(ab = cd \). Find \(A \)

\[
\begin{align*}
 a + b + c + d &= -3 \\
 ab + ac + ad + bc + bd + cd &= a b (c + d) + (a + b) cd = ab(a + b + c + d) \Rightarrow a b = 3 \\
 \Rightarrow A &= ab \cdot cd = (ab)^2 = 9
\end{align*}
\]
Ex. \(x + y + z = 0 \)
Prove
\[
\frac{x^2 + y^2 + z^2}{2} + \frac{x^5 + y^5 + z^5}{5} = \frac{x^7 + y^7 + z^7}{7}
\]

Consider \(t^3 + p \frac{t^2}{2} + q \) with roots \(x, y, z \).

Then \(x^3 = -px - q \).

So
\[
x^3 + y^3 + z^3 = (-px - q) + (-py - q) + (-pz - q) = -p(x + y + z) - 3q = -3q
\]
\[
x^2 + y^2 + z^2 = (x + y + z)^2 - 2(xy + xz + yz) = -2p
\]
\[
x^4 = -px^2 - qx
\]
\[
x^4 + y^4 + z^4 = -p(x^2 + y^2 + z^2) - 3q = -3q(x + y + z) = 2p^2
\]
\[
x^5 + y^5 + z^5 = -p(x^3 + y^3 + z^3) - 5q = 5pq
\]
\[
x^7 + y^7 + z^7 = -p(x^5 + y^5 + z^5) - 7q = -7pq
\]

So we get
\[
\frac{-2p}{2} \cdot \frac{5pq}{5} = \frac{-7pq}{7}
\]

which is true.

3) Derivative: if \(p \equiv 0 \) \((x-x_0)^r \) \((x-x_0)^s \)

- \(p(x) = \frac{1}{x-x_1} + \ldots + \frac{1}{x-x_n} \)
 - if \(p \) has a double root a, then \(p'(a) = 0 \)
 - and if \(p(a) = p'(a) = 0 \) \(\Rightarrow a \) has mult. \(\geq 2 \)

- \(p'(x) \) has root between any two roots of \(p(x) \) (real case)

Ex. Find all points \(x \) \(p(x) \) is a multiple of \(p''(x) \)

If \(a \) is a root of \(p''(x) \), it should be a root of \(p(x) \)

Ex. Prove that \(p(x) \) is a multiple of \(p'(x) \) iff \(p(x) = a(x-x_0)^n \)

\(n p(x) = a(x-x_0) p'(x) \) (compare top coeff.)

Let \(p(x) = (x-x_0)^n Q(x) \) \(Q(x_0) \neq 0 \)
\[
n p(x) = a(x-x_0) \cdot (k(x-x_0)^n + (x-x_0)^{n-1} Q') \Rightarrow n Q(x) = k Q(x) + (x-x_0) Q'(x)
\]
\[
n (x-x_0) Q(x)
\]

Substitute \(x = x_0 \) and get \(n Q(x_0) = k Q(x_0) \Rightarrow n = k \) (since \(Q(x_0) \neq 0 \))

Ex. Is it possible that for each \(a \) \(p(x) = a \) has many number of \(x \)?

Take all horizontal tangent lines and lines between
polynomials has all properties of continuous functions

Ex. \(Q(x) = x \) has no solution. Prove that \(Q(Q(x)) - x \) has no solution.

\(Q(x) - x \) has no roots, so \(Q(x) - x > 0 \) or \(Q(x) - x < 0 \) for all \(x \).

Assume
\[Q(x) > x \]
Then \(Q(Q(x)) > Q(x) > x \).

Ex. \(P(x) = a_n x^n + \ldots + a_0 \), \(a_n \neq 0 \) has at least one real root.
Prove that one can erase all \(a_i x^i \) one by one in such a way that all intermediate polynomials have at least one real root.

We have \(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \).

\(a_n \geq 0 \). If \(n \) is odd, we prove one by one everything except \(a_n x^n + a_0 \), and then \(a_n x^n \) (all the time power is odd \(\Rightarrow \) ok).

So \(n \) is even. Same thing if \(a_n < 0 \), so \(n \) is even and \(a_n > 0 \). Then erasure \(a_n x^n \).

\(Q = a_n x^n + \ldots + a_0 \).
If \(a_n = 0 \), then \(Q(a) = a_{n-1} a_n x^{n-1} < 0 \), \(Q(0) = a_0 > 0 \)
\(\Rightarrow \) there is a root.

Ex. Lagrange interpolation formula

\[P(x) = a_1 \frac{(x-x_2) \ldots (x-x_{n+1})}{(x_1-x_2) \ldots (x_1-x_{n+1})} + a_2 \frac{(x-x_1)(x-x_3) \ldots (x-x_{n+1})}{(x_2-x_1)(x_2-x_3) \ldots (x_2-x_{n+1})} + \ldots \]

Ex. the polynomial \(P \) has rational values in all rational numbers.
Prove that it has rational coefficients.