Theoretical Introduction to Generating functions

Here are basic recurrence equations that you can solve:

1. Let a_n be a sequence given by $a_0 = 0$ and $a_{n+1} = 2a_n + 1$ for $n \geq 1$. Find the general term of the sequence a_n.

2. Find the general term of the sequence given recurrently by

 $a_{n+1} = 2a_n + n$, \quad (n \geq 0), \quad a_0 = 1.

3. $F_0 = 0$, $F_1 = 1$, and for $n \geq 1$, $F_{n+1} = F_n + F_{n-1}$. Find the general term of the sequence.

4. Let the sequence be given by $a_0 = 0$, $a_1 = 2$, and for $n \leq 0$:

 $a_{n+2} = -4a_{n+1} - 8a_n$.

 Find the general term of the sequence.

5. Find the general term of the sequence x_n given by

 $x_0 = x_1 = 0$, \quad $x_{n+2} - 6x_{n+1} + 9x_n = 2^n + n$ \quad for $n \geq 0$.

6. Let $f_1 = 1$, $f_{2n} = f_n$, and $f_{2n+1} = f_n + f_{n+1}$. Find the general term of the sequence.

7. Evaluate the sum

 $\sum_k \binom{k}{n-k}$.

8. Evaluate the sum

 $\sum_{k=m}^{n} (-1)^k \binom{n}{k} \binom{k}{m}$.

9. Evaluate the sum

 $\sum_{k=m}^{n} \binom{n}{k} \binom{k}{m}$.
10. Evaluate
\[\sum_k \binom{n}{k} x^k. \]

11. Determine the elements of the sequence:
\[f(m) = \sum_k \binom{n}{k} \binom{n-k}{m-k} y^k. \]

12. Prove that
\[\sum_{k=0}^{n} \binom{2n}{2k} \binom{2k}{k} 2^{2n-2k} = \binom{4n}{2n}. \]

The following problem is slightly harder because the standard idea of snake oil doesn’t lead to a solution.

13. For given \(n \) and \(p \) evaluate
\[\sum_k \binom{2n+1}{2p+2k+1} \binom{p+k}{k}. \]

14. Prove that for the sequence of Fibonacci numbers we have
\[F_0 + F_1 + \cdots + F_n = F_{n+2} + 1. \]

15. Given a positive integer \(n \), let \(A \) denote the number of ways in which \(n \) can be partitioned as a sum of odd integers. Let \(B \) be the number of ways in which \(n \) can be partitioned as a sum of different integers. Prove that \(A = B \).

3. Find the number of permutations without fixed points of the set
\[\{1, 2, \ldots, n\} \]

16. Let \(n \in \mathbb{N} \) and assume that
\[x + 2y = n \quad \text{has } R_1 \text{ solutions in } \mathbb{N}_0^2 \]
\[2x + 3y = n - 1 \quad \text{has } R_2 \text{ solutions in } \mathbb{N}_0^2: \]
\[nx + (n+1)y = 1 \quad \text{has } R_n \text{ solutions in } \mathbb{N}_0^2 \]
\[(n+1)x + (n+2)y = 0 \quad \text{has } R_{n+1} \text{ solutions in } \mathbb{N}_0^2 \]
Prove \(\sum_k R_k = n + 1 \).
17. A polynomial \(f(x_1, x_2, \ldots, x_n) \) is called a symmetric if each permutation \(\sigma \in S_n \) we have \(f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) = f(x_1, \ldots, x_n) \). We will consider several classes of symmetric polynomials. The first class consists of the polynomials of the form:
\[
\sigma_k(x_1, \ldots, x_n) = \sum_{i_1 < \cdots < i_k} x_{i_1} \cdots x_{i_k}
\]
for \(1 \leq k \leq n, \sigma_0 = 1, \sigma_k = 0 \) for \(k > n \). Another class of symmetric polynomials are the polynomials of the form
\[
p_k(x_1, \ldots, x_n) = \sum_{i_1 + \cdots + i_n = k} x_1^{i_1} \cdots x_n^{i_n}, \quad \text{where } i_1, \ldots, i_n \in \mathbb{N}_0.
\]
The third class consists of the polynomials of the form:
\[
s_k(x_1, \ldots, x_n) = x_1^k + \cdots + x_n^k.
\]
Prove the following relations between the polynomials introduced above:
\[
\sum_{r=0}^{n} (-1)^r \sigma_r p_{n-r} = 0, \quad np_n = \sum_{r=1}^{n} s_r p_{n-r}, \quad \text{and } n\sigma_n = \sum_{r=1}^{n} (-1)^{r-1} s_r \sigma_{n-r}.
\]

18. Prove that there is a unique way to partition the set of natural numbers in two sets \(A \) and \(B \) such that: For every non-negative integer \(n \) (including 0) the number of ways in which \(n \) can be written as \(a_1 + a_2, a_1, a_2 \in A, a_1 \neq a_2 \) is at least 1 and is equal to the number of ways in which it can be represented as \(b_1 + b_2, b_1, b_2 \in B, b_1 \neq b_2 \).

19. Prove that in the contemporary calendar the 13th in a month is most likely to be Friday. Remark: The contemporary calendar has a period of 400 years. Every fourth year has 366 days except those divisible by 100 and not by 400.

20. Let \(a \) and \(b \) be positive integers. For a non-negative integer \(n \) let \(s(n) \) be the number of non-negative integer solutions to the equation
\[
ax + by = n
\]
Prove that the generating function of the sequence \(s(n) \) is
\[
f(x) = \frac{1}{(1-x^a)(1-x^b)}
\]

21. Prove that the number of ways of writing \(n \) as a sum of distinct positive integers is equal to the number of ways of writing \(n \) as a sum of odd positive integers. Note: This property is usually phrased as follows: Prove that the number of partitions of \(n \) into distinct parts is equal to the number of partitions of \(n \) into odd parts.

Generating functions are powerful tools for solving a number of problems mostly in combinatorics, but can be useful in other branches of mathematics as well.