Table of Contents

Chapter 1. Complex Tori
§1.1 The Definition of Complex Tori 1
§1.2 Hermitian Algebra .. 2
§1.3 The Invertible Sheaves on a Complex Torus 3
§1.4 The Structure of Pic(V/L) 5
§1.5 Translating Invertible Sheaves 7

Chapter 2. The Existence of Sections of Sheaves
§2.1 The Sections of Invertible Sheaves (Part I) 9
§2.2 The Sections of Invertible Sheaves (Part II) 10
§2.3 Abelian Varieties and Divisors 13
§2.4 Projective Embeddings of Abelian Varieties 15

Chapter 3. The Cohomology of Complex Tori
§3.1 The Cohomology of a Real Torus 19
§3.2 A Complex Torus as a Kähler Manifold 20
§3.3 The Proof of the Appel-Humbert Theorem 21
§3.4 A Vanishing Theorem for the Cohomology of Invertible Sheaves 23
§3.5 The Final Determination of the Cohomology of an Invertible Sheaf 25
§3.6 Examples ... 26

Chapter 4. Groups Acting on Complete Linear Systems
§4.1 Geometric Background ... 29
§4.2 Representations of the Theta Group 31
§4.3 The Hermitian Structure on Γ(X, L) 33
§4.4 The Isogeny Theorem up to a Constant 35

Chapter 5. Theta Functions
§5.1 Canonical Decompositions and Bases 37
§5.2 The Theta Function ... 38
VIII Table of Contents

§5.3 The Isogeny Theorem Absolutely .. 39
§5.4 The Classical Notation ... 40
§5.5 The Length of the Theta Functions 42

Chapter 6. The Algebra of the Theta Functions

§6.1 The Addition Formula ... 45
§6.2 Multiplication .. 47
§6.3 Some Bilinear Relations .. 49
§6.4 General Relations .. 51

Chapter 7. Moduli Spaces

§7.1 Complex Structures on a Symplectic Space 55
§7.2 Siegel Upper-half Space .. 58
§7.3 Families of Abelian Varieties and Moduli Spaces 62
§7.4 Families of Ample Sheaves on a Variable Abelian Variety 63
§7.5 Group Actions on the Families of Sheaves 66

Chapter 8. Modular Forms

§8.1 The Definition .. 69
§8.2 The Relationship Between \(\pi'_A\) and \(H\) in the Principally Polarized Case .. 70
§8.3 Generators of the Relevant Discrete Groups 72
§8.4 The Relationship Between \(\pi'_A\) and \(H\) is General 76
§8.5 Projective Embedding of Some Moduli Spaces 77

Chapter 9. Mappings to Abelian Varieties

§9.1 Integration .. 81
§9.2 Complete Reducibility of Abelian Varieties 82
§9.3 The Characteristic Polynomial of an Endomorphism 83
§9.4 The Gauss Mapping .. 84

Chapter 10. The Linear System \(|2D|\)

§10.1 When \(|D|\) Has No Fixed Components 87
§10.2 Projective Normality of \(|2D|\) .. 88
§10.3 The Factorization Theorem ... 89
§10.4 The General Case .. 90
§10.5 Projective Normality of \(|2D|\) on \(X/\{\pm1\}\) 92

Chapter 11. Abelian Varieties Occurring in Nature

§11.1 Hodge Structure .. 95
§11.2 The Moduli of Polarized Hodge Structure 97