Algebra and Algebraic Geometry Seminar Spring 2019

From UW-Math Wiki
Revision as of 01:11, 23 January 2019 by Sotirov (talk | contribs) (Undo revision 16682 by Sotirov (talk))
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The seminar meets on Fridays at 2:25 pm in room B235.

Here is the schedule for the previous semester, for the next semester, and for this semester.

Algebra and Algebraic Geometry Mailing List

  • Please join the AGS Mailing List to hear about upcoming seminars, lunches, and other algebraic geometry events in the department (it is possible you must be on a math department computer to use this link).


Spring 2019 Schedule

date speaker title host(s)
January 25 Daniel Smolkin (Utah) TBD Daniel
February 1 Juliette Bruce Asymptotic Syzgies for Products of Projective Spaces Local
February 8 Isabel Vogt (MIT) Low degree points on curves Wanlin and Juliette
February 15 Pavlo Pylyavskyy (U. Minn) TBD Paul Terwilliger
February 22 Michael Brown Chern-Weil theory for matrix factorizations Local
March 1 TBD TBD TBD
March 8 Jay Kopper (UIC) TBD Daniel
March 15 TBD TBD TBD
March 22 No Meeting Spring Break TBD
March 29 Chris Eur (UC Berkeley) TBD Daniel
April 5 TBD TBD TBD
April 12 TBD TBD TBD
April 19 Eloísa Grifo (Michigan) TBD TBD
April 26 TBD TBD TBD
May 3 TBD TBD TBD

Abstracts

Juliette Bruce

Title: Asymptotic Syzygies for Products of Projective Spaces

I will discuss results describing the asymptotic syzygies of products of projective space, in the vein of the explicit methods of Ein, Erman, and Lazarsfeld’s non-vanishing results on projective space.

Isabel Vogt

Title: Low degree points on curves

In this talk we will discuss an arithmetic analogue of the gonality of a curve over a number field: the smallest positive integer e such that the points of residue degree bounded by e are infinite. By work of Faltings, Harris--Silverman and Abramovich--Harris, it is well-understood when this invariant is 1, 2, or 3; by work of Debarre--Fahlaoui these criteria do not generalize to e at least 4. We will study this invariant using the auxiliary geometry of a surface containing the curve and devote particular attention to scenarios under which we can guarantee that this invariant is actually equal to the gonality . This is joint work with Geoffrey Smith.