Difference between revisions of "Graduate Logic Seminar"

From UW-Math Wiki
Jump to: navigation, search
(October 28 - Two short talks)
(December 7 - John Spoerl)
 
(81 intermediate revisions by 4 users not shown)
Line 1: Line 1:
The Graduate Logic Seminar is an informal space where graduate student and professors present topics related to logic which are not necessarly original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
+
The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
  
* '''When:''' Mondays 4p-5p
+
* '''When:''' Tuesdays 4-5 PM
* '''Where:''' Van Vleck B223.
+
* '''Where:''' Van Vleck 901
* '''Organizers:''' [https://www.math.wisc.edu/~omer/ Omer Mermelstein]
+
* '''Organizers:''' [https://www.math.wisc.edu/~jgoh/ Jun Le Goh]
  
 
The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.
 
The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.
Line 9: Line 9:
 
Sign up for the graduate logic seminar mailing list:  join-grad-logic-sem@lists.wisc.edu
 
Sign up for the graduate logic seminar mailing list:  join-grad-logic-sem@lists.wisc.edu
  
 +
== Fall 2021 tentative schedule ==
  
 +
To see what's happening in the Logic qual preparation sessions click [[Logic Qual Prep|here]].
  
== Fall 2019 - Tentative schedule ==
+
=== September 14 - organizational meeting ===
  
=== September 5 - Organizational meeting ===
+
We met to discuss the schedule.
  
=== September 9 - No seminar ===
+
=== September 28 - Ouyang Xiating ===
  
=== September 16 - Daniel Belin ===
+
Title: First-order logic, database and consistent query answering
Title: Lattice Embeddings of the m-Degrees and Second Order Arithmetic
 
  
Abstract: Lachlan, in a result later refined and clarified by Odifreddi, proved in 1970 that initial segments of the m-degrees can be embedded as an upper semilattice formed as the limit of finite distributive lattices. This allows us to show that the many-one degrees codes satisfiability in second-order arithmetic, due to a later result of Nerode and Shore. We will take a journey through Lachlan's rather complicated construction which sheds a great deal of light on the order-theoretic properties of many-one reducibility.
+
Abstract: Databases are a crucial component of many (if not all) modern
 +
applications. In reality, the data stored are often dirty and contain
 +
duplicated/missing entries, and it is a natural practice to clean the data
 +
first before executing the query. However, the same query might return
 +
different answers on different cleaned versions of the dataset. It is then
 +
helpful to compute the consistent answers: the query answers that will always
 +
be returned, regardless of how the dirty data is cleaned. In this talk, we
 +
first introduce the connection between first-order logic and query languages
 +
on databases, and then discuss the problem of Consistent Query Answering
 +
(CQA): How to compute consistent answers on dirty data? Finally, we show
 +
when the CQA problem can be solved using first-order logic for path queries.
  
=== September 23 - Daniel Belin ===
+
=== October 12 - Karthik Ravishankar ===
  
Title: Lattice Embeddings of the m-Degrees and Second Order Arithmetic - Continued
+
Title: Notions of randomness for subsets of the Natural Numbers
  
=== September 30 - Josiah Jacobsen-Grocott ===
+
Abstract: There are a number of notions of randomness of sets of natural numbers. These notions have been defined based on what a 'random object' should behave like such as being 'incompressible' or being 'hard to predict' etc. There is often a interplay between computability and randomness aspects of subsets of natural numbers. In this talk we motivate and present a few different notions of randomness and compare their relative strength.
  
Title: Scott Rank of Computable Models
+
=== October 26 - no seminar ===
  
Abstract: Infinatary logic extends the notions of first order logic by allowing infinite formulas. Scott's Isomorphism Theorem states that any countable structure can be characterized up to isomorphism by a single countable sentence. Closely related to the complexity of this sentence is what is known as the Scott Rank of the structure. In this talk we restrict our attention to computable models and look at an upper bound on the Scott Rank of such structures.
+
=== November 9 - Antonio Nákid Cordero ===
  
=== October 7 - Josiah Jacobsen-Grocott ===
+
Title: Martin's Conjecture: On the uniqueness of the Turing jump
  
Title: Scott Rank of Computable Codels - Continued
+
Abstract: The partial order of the Turing degrees is well-known to be extremely complicated. However, all the Turing degrees that appear "naturally" in mathematics turn out to be well-ordered. In the '70s, Martin made a sharp conjecture explaining this phenomenon, the prime suspect: the Turing jump. This talk will explore the precise statement of Martin's conjecture and the interesting mathematics that surround it.
  
=== October 14 - Tejas Bhojraj ===
+
=== November 23 - Antonio Nákid Cordero ===
  
Title: Solovay and Schnorr randomness for infinite sequences of qubits.
+
Title: Two Perspectives on Martin's Conjecture.
  
Abstract : We define Solovay and Schnorr randomness in the quantum setting. We then prove quantum versions of the law of large numbers and of the Shannon McMillan Breiman theorem (only for the iid case) for quantum Schnorr randoms.
+
Abstract: This time we will dive deeper into the recent developments around Martin's Conjecture. We will focus on two main themes: the uniformity assumption, and the interaction of Martin's conjecture with the theory of countable Borel equivalence relations.
  
=== October 23 - Tejas Bhojraj ===
+
=== December 7 - John Spoerl ===
  
Title: Solovay and Schnorr randomness for infinite sequences of qubits - continued
+
Title: Cardinals Beyond Choice and Inner Model Theory
  
Unusual time and place: Wednesday October 23, 4:30pm, Van Vleck B321.
+
Abstract: This talk will be a general introduction and overview of large cardinal axioms which violate the axiom of choice and their impact on the project of inner model theory.
  
=== October 28 - Two short talks ===
+
== Previous Years ==
 
 
'''Iván Ongay Valverde''' - Exploring different versions of the Semi-Open Coloring Axiom (SOCA)
 
 
 
In 1985, Avraham, Rubin and Shelah published an article where they introduced different coloring axioms. The weakest of them, the Semi-Open Coloring Axiom (SOCA), states that given an uncountable second countable metric space, $E$, and $W\subseteq E^{\dagger}:=E\times E\setminus \{(x, x) :x \in E\}$ open and symmetric, there is an uncountable subset $H\subseteq E$ such that either $H^{\dagger}\subseteq W$ or $H^{\dagger}\cap W=\emptyset$. We say that $W$ is an open coloring and $H$ is a homogeneous subset of $E$. This statement contradicts CH but, as shown also by Avraham, Rubin and Shelah, it is compatible with the continuum taking any other size. This classic paper leaves some questions open (either in an implicit or an explicit way):
 
 
 
- Is the axiom weaker if we demand that $W$ is clopen?
 
- If the continuum is bigger than $\aleph_2$, can we ask that $H$ has the same size as $E$?
 
- Can we expand this axiom to spaces that are not second countable and metric?
 
 
 
These questions lead to different versions of SOCA. In this talk, we will analyze how they relate to the original axiom.
 
 
 
'''James Earnest Hanson''' - Strongly minimal sets in continuous logic
 
 
 
The precise structural understanding of uncountably categorical theories given by the proof of the Baldwin-Lachlan theorem is known to fail in continuous logic in the context of inseparably categorical theories. The primary obstacle is the absence of strongly minimal sets in some inseparably categorical theories. We will develop the concept of strongly minimal sets in continuous logic and discuss some common conditions under which they are present in an $\omega$-stable theory. Finally, we will examine the extent to which we recover a Baldwin-Lachlan style characterization in the presence of strongly minimal sets.
 
 
 
=== November 4 - Two short talks ===
 
 
 
Manlio Valenti and Patrick Nicodemus
 
 
 
=== November 11 - Manlio Valenti I ===
 
 
 
=== November 18 - Manlio Valenti II ===
 
 
 
=== November 25 - Two short talks ===
 
Speakers TBD
 
 
 
=== December 2 - Iván Ongay Valverde I ===
 
 
 
=== December 9 - Iván Ongay Valverde II ===
 
 
 
==Previous Years==
 
  
 
The schedule of talks from past semesters can be found [[Graduate Logic Seminar, previous semesters|here]].
 
The schedule of talks from past semesters can be found [[Graduate Logic Seminar, previous semesters|here]].

Latest revision as of 14:25, 3 December 2021

The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.

  • When: Tuesdays 4-5 PM
  • Where: Van Vleck 901
  • Organizers: Jun Le Goh

The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.

Sign up for the graduate logic seminar mailing list: join-grad-logic-sem@lists.wisc.edu

Fall 2021 tentative schedule

To see what's happening in the Logic qual preparation sessions click here.

September 14 - organizational meeting

We met to discuss the schedule.

September 28 - Ouyang Xiating

Title: First-order logic, database and consistent query answering

Abstract: Databases are a crucial component of many (if not all) modern applications. In reality, the data stored are often dirty and contain duplicated/missing entries, and it is a natural practice to clean the data first before executing the query. However, the same query might return different answers on different cleaned versions of the dataset. It is then helpful to compute the consistent answers: the query answers that will always be returned, regardless of how the dirty data is cleaned. In this talk, we first introduce the connection between first-order logic and query languages on databases, and then discuss the problem of Consistent Query Answering (CQA): How to compute consistent answers on dirty data? Finally, we show when the CQA problem can be solved using first-order logic for path queries.

October 12 - Karthik Ravishankar

Title: Notions of randomness for subsets of the Natural Numbers

Abstract: There are a number of notions of randomness of sets of natural numbers. These notions have been defined based on what a 'random object' should behave like such as being 'incompressible' or being 'hard to predict' etc. There is often a interplay between computability and randomness aspects of subsets of natural numbers. In this talk we motivate and present a few different notions of randomness and compare their relative strength.

October 26 - no seminar

November 9 - Antonio Nákid Cordero

Title: Martin's Conjecture: On the uniqueness of the Turing jump

Abstract: The partial order of the Turing degrees is well-known to be extremely complicated. However, all the Turing degrees that appear "naturally" in mathematics turn out to be well-ordered. In the '70s, Martin made a sharp conjecture explaining this phenomenon, the prime suspect: the Turing jump. This talk will explore the precise statement of Martin's conjecture and the interesting mathematics that surround it.

November 23 - Antonio Nákid Cordero

Title: Two Perspectives on Martin's Conjecture.

Abstract: This time we will dive deeper into the recent developments around Martin's Conjecture. We will focus on two main themes: the uniformity assumption, and the interaction of Martin's conjecture with the theory of countable Borel equivalence relations.

December 7 - John Spoerl

Title: Cardinals Beyond Choice and Inner Model Theory

Abstract: This talk will be a general introduction and overview of large cardinal axioms which violate the axiom of choice and their impact on the project of inner model theory.

Previous Years

The schedule of talks from past semesters can be found here.