Difference between revisions of "NTSGrad/Abstracts"
(→Sep 20) |
(→Sep 27) |
||
Line 55: | Line 55: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
− | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''''' | + | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Ewan Dalby''' |
|- | |- | ||
− | | bgcolor="#BCD2EE" align="center" | '''' | + | | bgcolor="#BCD2EE" align="center" | ''Modular forms of half integral weight'' |
|- | |- | ||
− | | bgcolor="#BCD2EE" | | + | | bgcolor="#BCD2EE" | Usually when we think of modular forms we think of functions that gain an integral power of the automorphic factor under a group action. However we can generalize this notion to allow half integral weights. I will describe how this generalization works and it's connections to the theory of integral weight modular forms. |
|} | |} |
Revision as of 00:26, 17 October 2016
Contents
Sep 06
Brandon Alberts |
Introduction to the Cohen-Lenstra Measure |
The Cohen-Lenstra heuristics describe a conjectured probability distribution for the class group of quadratic fields. In this talk, I will give a brief introduction to the heuristic and how it is related to random groups. The remainder of the talk will focus on the Cohen-Lenstra probability measure for choosing a random p-group. This talk is based on a similar talk given by Bjorn Poonen. |
Sep 13
Vlad Matei |
Overview of the Discrete Log Problem |
The discrete logarithm problem (DLP) was first proposed as a hard problem in cryptography in the seminal article of Diffie and Hellman. Since then, together with factorization, it has become one of the two major pillars of public key cryptography.
In its simplest version for $\mathbb{Z}/p\mathbb{Z}$, the problem is given $b\hspace{2mm} ( \text{mod}\hspace{2mm} p)$ and $b^n \hspace{2mm}(\text{mod} \hspace{2mm} p)$ to find $n$. As far as we know, this problem is VERY HARD to solve quickly. Nobody has admitted publicly to having proved that the discrete log can't be solved quickly, but many very smart people have tried hard and not succeeded. This is a prep talk for the Thursday seminar 9/15/2016 |
Sep 20
Wanlin Li |
Gauss's Genus Theory and 2-Selmer Groups of Elliptic Curves |
I'm going to talk about how Gauss's genus theory characterized 2 torsion elements of the class group for imaginary quadratic fields and how to use 2 decent to compute the 2-Selmer group for an elliptic curve. |
Sep 27
Ewan Dalby |
Modular forms of half integral weight |
Usually when we think of modular forms we think of functions that gain an integral power of the automorphic factor under a group action. However we can generalize this notion to allow half integral weights. I will describe how this generalization works and it's connections to the theory of integral weight modular forms. |
Oct 4
' |
' |
Oct 11
' |
' |
Oct 18
' |
' |
Oct 25
' |
' |
Nov 1
' |
' |
Nov 8
' |
' |
Nov 15
' |
' |
Nov 22
' |
' |
Nov 29
' |
' |
Dec 6
' |
' |
Dec 13
' |
' |
Dec 20
' |
' |
Organizer contact information
Brandon Alberts (blalberts@math.wisc.edu)
Megan Maguire (mmaguire2@math.wisc.edu)
Return to the Number Theory Graduate Student Seminar Page
Return to the Number Theory Seminar Page
Return to the Algebra Group Page