Difference between revisions of "NTSGrad Fall 2015/Abstracts"

From UW-Math Wiki
Jump to: navigation, search
Line 1: Line 1:
== MONTH DATE ==
+
== Aug 28 ==
  
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER'''
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | (Summer)
 
|-
 
|-
 
| bgcolor="#BCD2EE"  align="center" | TITLE
 
| bgcolor="#BCD2EE"  align="center" | TITLE
Line 15: Line 15:
 
<br>
 
<br>
  
== MONTH DATE ==
+
== Sep 02 ==
  
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''SPEAKER'''
+
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Lalit Jain'''
 
|-
 
|-
| bgcolor="#BCD2EE"  align="center" | TITLE
+
| bgcolor="#BCD2EE"  align="center" | ''Monodromy computations in topology and number theory''
 
|-
 
|-
 
| bgcolor="#BCD2EE"  |   
 
| bgcolor="#BCD2EE"  |   
ABSTRACT
+
The monodromy of a family of varieties is a measure of how homology classes vary. Surprisingly, many familiar ideas in number theory, such as Galois representations and Cohen-Lenstra heuristics, are closely linked to monodromy of specific families. In this talk I will define monodromy, explain some number theoretic applications, and describe original work of computing monodromy for moduli spaces of covers of the projective line (Hurwitz spaces). This work generalizes previous results of Achter-Pries, Yu and Hall on hyperelliptic families. Only basic knowledge of algebraic topology and number theory is required. 
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>

Revision as of 13:49, 27 August 2014

Aug 28

(Summer)
TITLE

ABSTRACT


Sep 02

Lalit Jain
Monodromy computations in topology and number theory

The monodromy of a family of varieties is a measure of how homology classes vary. Surprisingly, many familiar ideas in number theory, such as Galois representations and Cohen-Lenstra heuristics, are closely linked to monodromy of specific families. In this talk I will define monodromy, explain some number theoretic applications, and describe original work of computing monodromy for moduli spaces of covers of the projective line (Hurwitz spaces). This work generalizes previous results of Achter-Pries, Yu and Hall on hyperelliptic families. Only basic knowledge of algebraic topology and number theory is required.


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT


MONTH DATE

SPEAKER
TITLE

ABSTRACT



Organizer contact information

Sean Rostami (srostami@math.wisc.edu)



Return to the Number Theory Graduate Student Seminar Page

Return to the Number Theory Seminar Page

Return to the Algebra Group Page